On the cohomology of Specht modules

被引:7
|
作者
Hemmer, David J.
Nakano, Daniel K. [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Univ Toledo, Dept Math, Toledo, OH 43606 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jalgebra.2006.03.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the cohomology of the Specht module S-lambda for the symmetric group Sigma(d). We show if 0 <= i <= p-2, then H-i. (Sigma(d), S-lambda) is isomorphic to Hs+i(B, w(0).lambda(1)-delta) where s = d(d - 1)/2, B is the Borel subgroup of the algebraic group GL(d) (k) and delta = (1d) is the weight of the determinant representation. We obtain similar isomorphisms of Ext(Sigma d)(i) (S-lambda, M) with B-cohomology, which in turn yield isomorphisms of cohomology for Borel subgroups of GL(n) (k) for varying n >= d. In the case i = 0, and the case i = 1 for certain lambda, we apply our result and known symmetric group results of James and Erdmann to obtain new information about B-cohomology. Finally we show that Specht module cohomology is closely related to cohomology for the Frobenius kemel B-1 for small primes. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 50 条