Branching rules for Specht modules

被引:5
|
作者
Ellers, Harald
Murray, John [1 ]
机构
[1] Natl Univ Ireland Univ Maynooth, Dept Math, Maynooth, Kildare, Ireland
[2] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
关键词
symmetric group; Specht module; Jucys-Murphy element;
D O I
10.1016/j.jalgebra.2006.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-lambda be a Specht module for the symmetric group Sigma(n) defined over a field of characteristic different from 2, and let L-n-1 be the sum of all transpositions in Sigma(n)-1 that do not fix n - 1. It is shown that the minimal polynomial of L-n-1 acting on S lambda has maximum possible degree. As a consequence, the indecomposable components of the restriction of S-lambda to Sigma(n)-1 coincide with the block components. Analogous results are proved for L-n+1 and the Sigma(n)+1 -module that is induced from S-lambda. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条