Carter-Payne homomorphisms and branching rules for endomorphism rings of Specht modules

被引:1
|
作者
Ellers, Harald [1 ]
Murray, John [2 ]
机构
[1] Allegheny Coll, Dept Math, Meadville, PA 16335 USA
[2] Natl Univ Ireland, Dept Math, Maynooth, Kildare, Ireland
关键词
SYMMETRIC-GROUPS;
D O I
10.1515/JGT.2010.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma(n) be the symmetric group of degree n, and let F be a field of characteristic p. Suppose that l is a partition of n + 1, that alpha and eta are partitions of n that can be obtained by removing a node of the same residue from lambda, and that alpha dominates beta. Let S(alpha) and S(beta) be the Specht modules, defined over F, corresponding to alpha, respectively beta. We use Jucys-Murphy elements to give a very simple description of a non-zero homomorphism S(alpha) -> S(beta). Following Lyle, we also give an explicit expression for the homomorphism in terms of semi-standard homomorphisms. Our methods furnish a lower bound for the Jantzen submodule of S(beta) that contains the image of the homomorphism. Our results allow us to describe completely the structure of the ring End(F Sigma n) (S(lambda) down arrow Sigma(n)) when p not equal 2.
引用
收藏
页码:477 / 501
页数:25
相关论文
共 6 条
  • [1] CYCLOTOMIC CARTER-PAYNE HOMOMORPHISMS
    Lyle, Sinead
    Mathas, Andrew
    [J]. REPRESENTATION THEORY, 2014, 18 : 117 - 154
  • [2] Carter-Payne homomorphisms and Jantzen filtrations
    Lyle, Sinead
    Mathas, Andrew
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 417 - 457
  • [3] Branching rules for Specht modules
    Ellers, Harald
    Murray, John
    [J]. JOURNAL OF ALGEBRA, 2007, 307 (01) : 278 - 286
  • [4] Complete branching rules for Specht modules
    Liu, Ricky Ini
    [J]. JOURNAL OF ALGEBRA, 2016, 446 : 77 - 102
  • [5] Homomorphisms with Semilocal Endomorphism Rings Between Modules
    Federico Campanini
    Susan F. El-Deken
    Alberto Facchini
    [J]. Algebras and Representation Theory, 2020, 23 : 2237 - 2256
  • [6] Homomorphisms with Semilocal Endomorphism Rings Between Modules
    Campanini, Federico
    El-Deken, Susan F.
    Facchini, Alberto
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (06) : 2237 - 2256