Stationary isothermic surfaces in Euclidean 3-space

被引:4
|
作者
Magnanini, Rolando [1 ]
Peralta-Salas, Daniel [2 ]
Sakaguchi, Shigeru [3 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] CSIC, Inst Ciencias Matemat, Plaza Murillo 2, E-28049 Madrid, Spain
[3] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
EMBEDDED SURFACES; MINIMAL-SURFACES; UNIQUENESS; TOPOLOGY; GEOMETRY;
D O I
10.1007/s00208-015-1212-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R-3 with partial derivative Omega = partial derivative(R-3\(Omega) over bar), where partial derivative Omega is unbounded and connected, and let u be the solution of the Cauchy problem for the heat equation partial derivative(t)u = Delta u over R-3, where the initial data is the characteristic function of the set Omega(c) = R-3\Omega. We show that, if there exists a stationary isothermic surface Gamma of u with Gamma boolean AND partial derivative Omega = empty set , then both partial derivative Omega and Gamma must be either parallel planes or co-axial circular cylinders. This theorem completes the classification of stationary isothermic surfaces in the case that Gamma boolean AND partial derivative Omega = empty set and partial derivative Omega is unbounded. To prove this result, we establish a similar theorem for uniformly dense domains in R-3, a notion that was introduced by Magnanini et al. (Trans Am Math Soc 358:4821-4841, 2006). In the proof, we use methods from the theory of surfaces with constant mean curvature, combined with a careful analysis of certain asymptotic expansions and a surprising connection with the theory of transnormal functions.
引用
收藏
页码:97 / 124
页数:28
相关论文
共 50 条
  • [21] FLAT SURFACES WITH SINGULARITIES IN EUCLIDEAN 3-SPACE
    Murata, Satoko
    Umehara, Masaaki
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 82 (02) : 279 - 316
  • [22] Symmetry Problems on Stationary Isothermic Surfaces in Euclidean Spaces
    Sakaguchi, Shigeru
    GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S, 2016, 176 : 231 - 239
  • [23] Geometry of tubular surfaces and their focal surfaces in Euclidean 3-space
    Saad, M. Khalifa
    Yuksel, Nural
    Ogras, Nurdan
    Alghamdi, Fatemah
    Abdel-Salam, A. A.
    AIMS MATHEMATICS, 2024, 9 (05): : 12479 - 12493
  • [24] ON THE HARMONIC EVOLUTE SURFACES OF TUBULAR SURFACES IN EUCLIDEAN 3-SPACE
    Eren, Kemal
    JOURNAL OF SCIENCE AND ARTS, 2021, (02): : 449 - 460
  • [25] Stationary isothermic surfaces and some characterizations of the hyperplane in the N-dimensional Euclidean space
    Magnanini, Rolando
    Sakaguchi, Shigeru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (05) : 1112 - 1119
  • [26] Classifications Of Conformal Rotational Surfaces In Euclidean 3-Space
    Karacan, Murat Kemal
    Tuncer, Yilmaz
    Yuksel, Nural
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 535 - 544
  • [27] Polynomial Affine Translation Surfaces in Euclidean 3-Space
    Bozok, Hulya Gun
    Ergut, Mahmut
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 195 - 202
  • [28] Euclidean symmetry of closed surfaces immersed in 3-space
    Leopold, Undine
    Tucker, Thomas W.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 202 : 135 - 150
  • [29] Sweeping Surfaces of Polynomial Curves in Euclidean 3-space
    Zhu, Yuting
    Li, Yanlin
    Eren, Kemal
    Ersoy, Soley
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2025, 33 (01):
  • [30] Weingarten Affine Translation Surfaces in Euclidean 3-Space
    Seoung Dal Jung
    Huili Liu
    Yixuan Liu
    Results in Mathematics, 2017, 72 : 1839 - 1848