Stationary isothermic surfaces in Euclidean 3-space

被引:4
|
作者
Magnanini, Rolando [1 ]
Peralta-Salas, Daniel [2 ]
Sakaguchi, Shigeru [3 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] CSIC, Inst Ciencias Matemat, Plaza Murillo 2, E-28049 Madrid, Spain
[3] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
EMBEDDED SURFACES; MINIMAL-SURFACES; UNIQUENESS; TOPOLOGY; GEOMETRY;
D O I
10.1007/s00208-015-1212-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R-3 with partial derivative Omega = partial derivative(R-3\(Omega) over bar), where partial derivative Omega is unbounded and connected, and let u be the solution of the Cauchy problem for the heat equation partial derivative(t)u = Delta u over R-3, where the initial data is the characteristic function of the set Omega(c) = R-3\Omega. We show that, if there exists a stationary isothermic surface Gamma of u with Gamma boolean AND partial derivative Omega = empty set , then both partial derivative Omega and Gamma must be either parallel planes or co-axial circular cylinders. This theorem completes the classification of stationary isothermic surfaces in the case that Gamma boolean AND partial derivative Omega = empty set and partial derivative Omega is unbounded. To prove this result, we establish a similar theorem for uniformly dense domains in R-3, a notion that was introduced by Magnanini et al. (Trans Am Math Soc 358:4821-4841, 2006). In the proof, we use methods from the theory of surfaces with constant mean curvature, combined with a careful analysis of certain asymptotic expansions and a surprising connection with the theory of transnormal functions.
引用
收藏
页码:97 / 124
页数:28
相关论文
共 50 条
  • [31] On Ruled Surfaces with a Sannia Frame in Euclidean 3-space
    Senyurt, Suleyman
    Eren, Kemal
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 509 - 531
  • [32] Characterizations of Loxodromes on Rotational Surfaces in Euclidean 3-Space
    Aksoyak, Ferdag Kahraman
    Demirci, Burcu Bektas
    Babaarslan, Murat
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 147 - 159
  • [33] The Chen type of Hasimoto surfaces in the Euclidean 3-space
    Al-Zoubi, Hassan
    Senoussi, Bendehiba
    Al-Sabbagh, Mutaz
    Ozdemir, Mehmet
    AIMS MATHEMATICS, 2023, 8 (07): : 16062 - 16072
  • [34] Structure and characterization of ruled surfaces in Euclidean 3-space
    Yu, Yanhua
    Liu, Huili
    Dal Jung, Seoung
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 252 - 259
  • [35] KILLING MAGNETIC FLUX SURFACES IN EUCLIDEAN 3-SPACE
    Ozdemir, Zehra
    Gok, Ismail
    Yayli, Yusuf
    Ekmekci, F. Nejat
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (02): : 329 - 342
  • [36] Surfaces in Euclidean 3-space with Maslovian normal bundles
    Sasahara, Toru
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 66 (1): : 41 - 50
  • [37] FOCAL SURFACES OF WAVE FRONTS IN THE EUCLIDEAN 3-SPACE
    Teramoto, Keisuke
    GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (02) : 425 - 440
  • [38] Weingarten Affine Translation Surfaces in Euclidean 3-Space
    Dal Jung, Seoung
    Liu, Huili
    Liu, Yixuan
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1839 - 1848
  • [39] Classes of generalized Weingarten surfaces in the Euclidean 3-space
    Dias, Diogo G.
    Corro, Armando M. V.
    ADVANCES IN GEOMETRY, 2016, 16 (01) : 45 - 55
  • [40] Minimal surfaces in euclidean 3-space and their mean curvature 1 cousins in hyperbolic 3-space
    Fujimori, S
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2003, 75 (03): : 271 - 278