Stationary isothermic surfaces and some characterizations of the hyperplane in the N-dimensional Euclidean space

被引:7
|
作者
Magnanini, Rolando [1 ]
Sakaguchi, Shigeru [2 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Hiroshima Univ, Grad Sch Engn, Dept Appl Math, Higashihiroshima 7398527, Japan
基金
日本学术振兴会;
关键词
Heat equation; Overdetermined problems; Stationary isothermic surfaces; Hyperplanes; Monge-Ampere-type equation;
D O I
10.1016/j.jde.2009.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the entire graph S of a continuous real function over R(N-1) with N >= 3. Let Omega be a domain in R(N) with S as a boundary. Consider in Omega the beat now with initial temperature 0 and boundary temperature 1. The problem we consider is to characterize S in such a way that there exists a stationary isothermic surface in Omega. We show that S must be a hyperplane under some general conditions on S. This is related to Liouville or Bernstein-type theorems for some elliptic Monge-Ampere-type equation. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1112 / 1119
页数:8
相关论文
共 50 条
  • [1] Stationary isothermic surfaces in Euclidean 3-space
    Magnanini, Rolando
    Peralta-Salas, Daniel
    Sakaguchi, Shigeru
    MATHEMATISCHE ANNALEN, 2016, 364 (1-2) : 97 - 124
  • [2] Stationary isothermic surfaces in Euclidean 3-space
    Rolando Magnanini
    Daniel Peralta-Salas
    Shigeru Sakaguchi
    Mathematische Annalen, 2016, 364 : 97 - 124
  • [3] N-DIMENSIONAL HELICOIDAL SURFACES IN EUCLIDEAN-SPACE EM
    LISITSA, VT
    MATHEMATICAL NOTES, 1987, 41 (3-4) : 308 - 312
  • [4] Rectifying curves in the n-dimensional Euclidean space
    Cambie, Stijn
    Goemans, Wendy
    Van den Bussche, Iris
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (01) : 210 - 223
  • [5] On the Curvatures of a Curve in n-Dimensional Euclidean Space
    Shelekhov, A. M.
    RUSSIAN MATHEMATICS, 2021, 65 (11) : 46 - 58
  • [6] RAY SYSTEMS IN N-DIMENSIONAL EUCLIDEAN SPACE
    SULANKE, R
    MATHEMATISCHE NACHRICHTEN, 1970, 43 (1-6) : 25 - &
  • [7] HALF ROTATIONS IN N-DIMENSIONAL EUCLIDEAN SPACE
    MCCAMMON, RB
    COMMUNICATIONS OF THE ACM, 1966, 9 (09) : 688 - &
  • [8] Normal curves in n-dimensional Euclidean space
    Bektas, Ozcan
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [9] n-Dimensional Euclidean space Gaussian enfoldment
    E. Besalú
    R. Carbó-Dorca
    Journal of Mathematical Chemistry, 2011, 49 : 2231 - 2243
  • [10] FRACTIONAL INTEGRALS ON N-DIMENSIONAL EUCLIDEAN SPACE
    STEIN, EM
    WEISS, G
    JOURNAL OF MATHEMATICS AND MECHANICS, 1958, 7 (04): : 503 - 514