Modelling Hospital Mortality Data using The Heligman-Pollard Model with R HPBayes

被引:1
|
作者
Emilidha, Wella Pasca [1 ]
Danardono [2 ]
机构
[1] Pusat Kurikulum & Perbukuan, Kemdikbud Jalan Gunung Sahari Raya 4, Kemayoran, Jakarta Pusat, Indonesia
[2] Univ Gadjah Mada Sekip Utara, Dept Math, Bulaksumur 55281, Yogyakarta, Indonesia
来源
关键词
The Heligman-Pollard Model; IMIS Algorithm; Bayesian Model;
D O I
10.1063/1.4979441
中图分类号
O59 [应用物理学];
学科分类号
摘要
Analysis on hospital mortality data gives an important information to improve hospital performances and for mortality comparison. One important model in the parametric family for mortality is the Heligman-Pollard Model (the HP Model). Recently, the method of estimation for this model has been developed based on Bayesian Inference and implemented in the R package HPbayes. In this paper, mortality data from the inpatient records during the period of 2010-2014 in a certain general hospital in Sragen were used to model the hospital mortality pattern across the whole life span using the HPbayes. The interpretation of the model and comparison to the national life table are discussed.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] DeepMPM: a mortality risk prediction model using longitudinal EHR data
    Fan Yang
    Jian Zhang
    Wanyi Chen
    Yongxuan Lai
    Ying Wang
    Quan Zou
    BMC Bioinformatics, 23
  • [42] DeepMPM: a mortality risk prediction model using longitudinal EHR data
    Yang, Fan
    Zhang, Jian
    Chen, Wanyi
    Lai, Yongxuan
    Wang, Ying
    Zou, Quan
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [43] Input and output data analysis for system dynamics modelling using the tidyverse libraries of R
    Duggan, Jim
    SYSTEM DYNAMICS REVIEW, 2018, 34 (03) : 438 - 461
  • [44] Predicting in-hospital mortality with coronary bypass surgery using hospital discharge data:: Comparison with a prospective observational study
    Ribera, Aida
    Marsal, Josep R.
    Ferreira-Gonzalez, Ignacio
    Cascant, Purificacio
    Pons, Joan M. V.
    Mitjavila, Francesca
    Salas, Teresa
    Permanyer-Miralda, Gaieta
    REVISTA ESPANOLA DE CARDIOLOGIA, 2008, 61 (08): : 843 - 852
  • [45] Identifying Increased Risk of Readmission and In-hospital Mortality Using Hospital Administrative Data The AHRQ Elixhauser Comorbidity Index
    Moore, Brian J.
    White, Susan
    Washington, Raynard
    Coenen, Natalia
    Elixhauser, Anne
    MEDICAL CARE, 2017, 55 (07) : 698 - 705
  • [46] DEVELOPMENT OF A PREDICTION MODEL FOR HOSPITAL CLOSURE USING FINANCIAL ACCOUNTING DATA
    WERTHEIM, P
    LYNN, ML
    DECISION SCIENCES, 1993, 24 (03) : 529 - 546
  • [47] Modelling R&D expenditure data with zero observations: two-equation model
    Lee, Joo-Suk
    Yoo, Seung-Hoon
    Kwak, Seung-Jun
    APPLIED ECONOMICS, 2011, 43 (06) : 717 - 727
  • [48] Modelling of healthcare data analytics using optimal machine learning model in big data environment
    Fancy, Chelladurai
    Krishnaraj, Nagappan
    Ishwarya, K.
    Raja, G.
    Chandrasekaran, Shyamala
    EXPERT SYSTEMS, 2025, 42 (01)
  • [49] Staffing levels and hospital mortality in England: a national panel study using routinely collected data
    Rubbo, Bruna
    Saville, Christina
    Dall'Ora, Chiara
    Turner, Lesley
    Jones, Jeremy
    Ball, Jane
    Culliford, David
    Griffiths, Peter
    BMJ OPEN, 2023, 13 (05):
  • [50] Changes in Hospital Mortality of Emergency Hospitalization Severe Heart Failure Patients Using DPC Data
    Mizuguchi, Takao
    Tsuda, Daisuke
    Takarada, Akira
    JOURNAL OF CARDIAC FAILURE, 2014, 20 (10) : S168 - S168