Modelling Hospital Mortality Data using The Heligman-Pollard Model with R HPBayes

被引:1
|
作者
Emilidha, Wella Pasca [1 ]
Danardono [2 ]
机构
[1] Pusat Kurikulum & Perbukuan, Kemdikbud Jalan Gunung Sahari Raya 4, Kemayoran, Jakarta Pusat, Indonesia
[2] Univ Gadjah Mada Sekip Utara, Dept Math, Bulaksumur 55281, Yogyakarta, Indonesia
来源
关键词
The Heligman-Pollard Model; IMIS Algorithm; Bayesian Model;
D O I
10.1063/1.4979441
中图分类号
O59 [应用物理学];
学科分类号
摘要
Analysis on hospital mortality data gives an important information to improve hospital performances and for mortality comparison. One important model in the parametric family for mortality is the Heligman-Pollard Model (the HP Model). Recently, the method of estimation for this model has been developed based on Bayesian Inference and implemented in the R package HPbayes. In this paper, mortality data from the inpatient records during the period of 2010-2014 in a certain general hospital in Sragen were used to model the hospital mortality pattern across the whole life span using the HPbayes. The interpretation of the model and comparison to the national life table are discussed.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Modelling and inversion of electromagnetic data using an approximate plate model
    Pirttijärvi, M
    Pietilä, R
    Hattula, A
    Hjelt, SE
    GEOPHYSICAL PROSPECTING, 2002, 50 (05) : 425 - 440
  • [32] Prediction of hospital mortality from admission laboratory data and patient age: A simple model
    Asadollahi, Khairollah
    Hastings, Ian M.
    Gill, Geoffrey V.
    Beeching, Nicholas J.
    EMERGENCY MEDICINE AUSTRALASIA, 2011, 23 (03) : 354 - 363
  • [33] Analysis of hospital management data using generalized linear model
    Tsumoto, Yuko
    Tsumoto, Shusaku
    COMPLEX MEDICAL ENGINEERING, 2007, : 173 - +
  • [34] Evaluation of acute myocardial infarction in-hospital mortality using a risk-adjustment model based on Japanese administrative data
    Hayashida, K.
    Imanaka, Y.
    Sekimoto, M.
    Kobuse, H.
    Fukuda, H.
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2007, 35 (05) : 590 - 596
  • [35] RISK ADJUSTMENT FOR SEPSIS MORTALITY TO FACILITATE HOSPITAL COMPARISONS USING ROUTINE EHR DATA
    Rhee, Chanu
    Wang, Rui
    Song, Yue
    Zhang, Zilu
    Kadri, Sameer
    Fram, David
    Jin, Robert
    Klompas, Michael
    CRITICAL CARE MEDICINE, 2019, 47
  • [36] The Hospital Mortality Project: a tool for using administrative data for continuous clinical quality assurance
    Mukhtar, S. Aqif
    Hoffman, Neville E.
    MacQuillan, Gerry
    Semmens, James B.
    HEALTH INFORMATION MANAGEMENT JOURNAL, 2008, 37 (02) : 9 - 18
  • [37] Comparing Comorbidity Adjustment Scores for Predicting in-Hospital Mortality Using Administrative Data
    Freitas, Alberto
    Santos, Joao Vasco
    Lobo, Mariana
    Santos, Cristina
    RECENT ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 3, 2017, 571 : 324 - 331
  • [38] Predictive Analytical Model for Microblogging Data Using Asset Bubble Modelling
    Hiriyannaiah, Srinidhi
    Siddesh, G. M.
    Srinivasa, K. G.
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2020, 14 (02) : 108 - 118
  • [39] Modelling of crude oil price data using hidden Markov model
    Kadhem, Safaa
    Thajel, Haider
    JOURNAL OF RISK FINANCE, 2023, 24 (02) : 269 - 284
  • [40] Modelling and forecasting mortality distributions in England and wales using the Lee-Carter model
    Wang, DL
    Lu, PJ
    JOURNAL OF APPLIED STATISTICS, 2005, 32 (09) : 873 - 885