Modelling Hospital Mortality Data using The Heligman-Pollard Model with R HPBayes

被引:1
|
作者
Emilidha, Wella Pasca [1 ]
Danardono [2 ]
机构
[1] Pusat Kurikulum & Perbukuan, Kemdikbud Jalan Gunung Sahari Raya 4, Kemayoran, Jakarta Pusat, Indonesia
[2] Univ Gadjah Mada Sekip Utara, Dept Math, Bulaksumur 55281, Yogyakarta, Indonesia
来源
关键词
The Heligman-Pollard Model; IMIS Algorithm; Bayesian Model;
D O I
10.1063/1.4979441
中图分类号
O59 [应用物理学];
学科分类号
摘要
Analysis on hospital mortality data gives an important information to improve hospital performances and for mortality comparison. One important model in the parametric family for mortality is the Heligman-Pollard Model (the HP Model). Recently, the method of estimation for this model has been developed based on Bayesian Inference and implemented in the R package HPbayes. In this paper, mortality data from the inpatient records during the period of 2010-2014 in a certain general hospital in Sragen were used to model the hospital mortality pattern across the whole life span using the HPbayes. The interpretation of the model and comparison to the national life table are discussed.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Risk Modelling Framework for Emergency Hospital Readmission, Using Hospital Episode Statistics Inpatient Data
    Mesgarpour, Mohsen
    Chaussalet, Thierry
    Chahed, Salma
    2016 IEEE 29TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2016, : 219 - 224
  • [22] Patterns of malaria-related hospital admissions and mortality among Malawian children: an example of spatial modelling of hospital register data
    Lawrence N Kazembe
    Immo Kleinschmidt
    Brian L Sharp
    Malaria Journal, 5
  • [23] Patterns of malaria-related hospital admissions and mortality among Malawian children: an example of spatial modelling of hospital register data
    Kazembe, Lawrence N.
    Kleinschmidt, Immo
    Sharp, Brian L.
    MALARIA JOURNAL, 2006, 5 (1)
  • [24] Modelling the effect of breast cancer screening on related mortality using French data
    Uhry, Z.
    Hedelin, G.
    Colonna, M.
    Asselain, B.
    Arveux, P.
    Exbrayat, C.
    Guldenfelds, C.
    Soler-Michel, P.
    Molinie, F.
    Tretarre, B.
    Rogel, A.
    Courtial, I.
    Danzon, A.
    Guizard, A. V.
    Ancelle-Park, R.
    Eilstein, D.
    Duffy, S.
    CANCER EPIDEMIOLOGY, 2011, 35 (03) : 235 - 242
  • [25] A TWO-STAGE ESTIMATION OF HOSPITAL QUALITY USING MORTALITY OUTCOME MEASURES: AN APPLICATION USING HOSPITAL ADMINISTRATIVE DATA
    Chua, Chew Lian
    Palangkaraya, Alfons
    Yong, Jongsay
    HEALTH ECONOMICS, 2010, 19 (12) : 1404 - 1424
  • [26] Mortality control charts for comparing performance of surgical units: validation study using hospital mortality data
    Tekkis, PP
    McCulloch, P
    Steger, AC
    Benjamin, IS
    Poloniecki, JD
    BMJ-BRITISH MEDICAL JOURNAL, 2003, 326 (7393): : 786 - 788A
  • [27] Using hospital discharge data for determining neonatal morbidity and mortality: a validation study
    Ford, Jane B.
    Roberts, Christine L.
    Algert, Charles S.
    Bowen, Jennifer R.
    Bajuk, Barbara
    Henderson-Smart, David J.
    BMC HEALTH SERVICES RESEARCH, 2007, 7
  • [28] Using structured pathology data to predict hospital-wide mortality at admission
    Deschepper, Mieke
    Waegeman, Willem
    Vogelaers, Dirk
    Eeckloo, Kristof
    Orueta, Juan F.
    PLOS ONE, 2020, 15 (06):
  • [29] Estimating the out-of-hospital mortality rate using patient discharge data
    Farsi, Mehdi
    Ridder, Geert
    HEALTH ECONOMICS, 2006, 15 (09) : 983 - 995
  • [30] Using hospital discharge data for determining neonatal morbidity and mortality: a validation study
    Jane B Ford
    Christine L Roberts
    Charles S Algert
    Jennifer R Bowen
    Barbara Bajuk
    David J Henderson-Smart
    BMC Health Services Research, 7