Self-affine sets with fibred tangents

被引:7
|
作者
Kaenmaki, Antti [1 ]
Koivusalo, Henna [2 ]
Rossi, Eino [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ASSOUAD DIMENSION; SCENERY FLOW; GEOMETRY; DISTRIBUTIONS;
D O I
10.1017/etds.2015.130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation O such that all tangent sets at that point are either of the form O((R x C) boolean AND B (0, 1)), where C is a closed porous set, or of the form O((l x {0}) boolean AND B (0, 1)), where l is an interval.
引用
收藏
页码:1915 / 1934
页数:20
相关论文
共 50 条
  • [41] Dimension Functions of Self-Affine Scaling Sets
    Fu, Xiaoye
    Gabardo, Jean-Pierre
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (04): : 745 - 758
  • [42] Dimensions of projected sets and measures on typical self-affine sets
    Feng, De-Jun
    Lo, Chiu-Hong
    Ma, Cai-Yun
    ADVANCES IN MATHEMATICS, 2023, 431
  • [43] Hausdorff dimension of planar self-affine sets and measures
    Balázs Bárány
    Michael Hochman
    Ariel Rapaport
    Inventiones mathematicae, 2019, 216 : 601 - 659
  • [44] Dimension of self-affine sets for fixed translation vectors
    Barany, Balazs
    Kaenmaki, Antti
    Koivusalo, Henna
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 223 - 252
  • [45] Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets
    Ming-Liang Chen
    Jing-Cheng Liu
    Jia Zheng
    The Journal of Geometric Analysis, 2024, 34
  • [46] VISIBLE PART OF DOMINATED SELF-AFFINE SETS IN THE PLANE
    Rossi, Eino
    ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 1089 - 1103
  • [47] Birkhoff and Lyapunov Spectra on Planar Self-affine Sets
    Barany, Balazs
    Jordan, Thomas
    Kaenmaki, Antti
    Rams, Michal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (10) : 7966 - 8005
  • [48] Integral self-affine sets with positive Lebesgue measures
    Guo-Tai Deng
    Xing-Gang He
    Archiv der Mathematik, 2008, 90 : 150 - 157
  • [49] Tiling and Spectrality for Generalized Sierpinski Self-Affine Sets
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Zheng, Jia
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [50] Self-affine sets and graph-directed systems
    He, XG
    Lau, KS
    Rao, H
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (03) : 373 - 397