Hausdorff dimension of planar self-affine sets and measures

被引:0
|
作者
Balázs Bárány
Michael Hochman
Ariel Rapaport
机构
[1] Budapest University of Technology and Economics,MTA
[2] The Hebrew University,BME Stochastics Research Group, Department of Stochastics
来源
Inventiones mathematicae | 2019年 / 216卷
关键词
Primary 28A80; Secondary 37C45; 37F35;
D O I
暂无
中图分类号
学科分类号
摘要
Let X=⋃φiX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X={\bigcup }{\varphi }_{i}X$$\end{document} be a strongly separated self-affine set in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} (or one satisfying the strong open set condition). Under mild non-conformality and irreducibility assumptions on the matrix parts of the φi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{i}$$\end{document}, we prove that dimX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim X$$\end{document} is equal to the affinity dimension, and similarly for self-affine measures and the Lyapunov dimension. The proof is via analysis of the dimension of the orthogonal projections of the measures, and relies on additive combinatorics methods.
引用
收藏
页码:601 / 659
页数:58
相关论文
共 50 条
  • [1] Hausdorff dimension of planar self-affine sets and measures
    Barany, Balazs
    Hochman, Michael
    Rapaport, Ariel
    [J]. INVENTIONES MATHEMATICAE, 2019, 216 (03) : 601 - 659
  • [2] Hausdorff dimension of planar self-affine sets and measures with overlaps
    Hochman, Michael
    Rapaport, Ariel
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (07) : 2361 - 2441
  • [3] THE BOX AND HAUSDORFF DIMENSION OF SELF-AFFINE SETS
    BEDFORD, T
    URBANSKI, M
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 : 627 - 644
  • [4] On the Hausdorff dimension of certain self-affine sets
    Abercrombie, AG
    Nair, R
    [J]. STUDIA MATHEMATICA, 2002, 152 (02) : 105 - 124
  • [5] Hausdorff dimension of the level sets of self-affine functions
    Peng, Li
    Kamae, Teturo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1400 - 1409
  • [6] ASSOUAD DIMENSION OF PLANAR SELF-AFFINE SETS
    Barany, Balazs
    Kaenmaki, Antti
    Rossi, Eino
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 1297 - 1326
  • [7] ON THE DIMENSION OF SELF-AFFINE SETS AND MEASURES WITH OVERLAPS
    Barany, Balazs
    Michalrams
    Simon, Karoly
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) : 4427 - 4440
  • [8] THE DIMENSION OF PROJECTIONS OF SELF-AFFINE SETS AND MEASURES
    Falconer, Kenneth
    Kempton, Tom
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) : 473 - 486
  • [9] EXPLICIT BOUNDS FOR THE HAUSDORFF DIMENSION OF CERTAIN SELF-AFFINE SETS
    RIEDI, RH
    [J]. FRACTALS IN THE NATURAL AND APPLIED SCIENCES, 1994, 41 : 313 - 324
  • [10] Hausdorff dimension of self-affine limit sets with an invariant direction
    Baranski, Krzysztof
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (04): : 1015 - 1023