Hausdorff dimension of planar self-affine sets and measures

被引:0
|
作者
Balázs Bárány
Michael Hochman
Ariel Rapaport
机构
[1] Budapest University of Technology and Economics,MTA
[2] The Hebrew University,BME Stochastics Research Group, Department of Stochastics
来源
Inventiones mathematicae | 2019年 / 216卷
关键词
Primary 28A80; Secondary 37C45; 37F35;
D O I
暂无
中图分类号
学科分类号
摘要
Let X=⋃φiX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X={\bigcup }{\varphi }_{i}X$$\end{document} be a strongly separated self-affine set in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} (or one satisfying the strong open set condition). Under mild non-conformality and irreducibility assumptions on the matrix parts of the φi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{i}$$\end{document}, we prove that dimX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim X$$\end{document} is equal to the affinity dimension, and similarly for self-affine measures and the Lyapunov dimension. The proof is via analysis of the dimension of the orthogonal projections of the measures, and relies on additive combinatorics methods.
引用
收藏
页码:601 / 659
页数:58
相关论文
共 50 条