Hausdorff dimension of planar self-affine sets and measures with overlaps

被引:13
|
作者
Hochman, Michael [1 ,2 ]
Rapaport, Ariel [1 ,3 ,4 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, Jerusalem, Israel
[2] Inst Adv Study, 1 Einstein Dr, Princeton, NJ 08540 USA
[3] Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
[4] Technion, Dept Math, Haifa, Israel
基金
美国国家科学基金会;
关键词
Hausdorff dimension; self-affine set; self-affine measure; Lyapunov dimension; LEDRAPPIER-YOUNG FORMULA; EQUAL HAUSDORFF; BOX;
D O I
10.4171/JEMS/1127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if mu is a self-affine measure in the plane whose defining IFS acts totally irreducibly on RP1 and satisfies an exponential separation condition, then its dimension is equal to its Lyapunov dimension. We also treat a class of reducible systems. This extends our previous work on the subject with Barany to the overlapping case.
引用
收藏
页码:2361 / 2441
页数:81
相关论文
共 50 条
  • [1] Hausdorff dimension of planar self-affine sets and measures
    Balázs Bárány
    Michael Hochman
    Ariel Rapaport
    [J]. Inventiones mathematicae, 2019, 216 : 601 - 659
  • [2] Hausdorff dimension of planar self-affine sets and measures
    Barany, Balazs
    Hochman, Michael
    Rapaport, Ariel
    [J]. INVENTIONES MATHEMATICAE, 2019, 216 (03) : 601 - 659
  • [3] ON THE DIMENSION OF SELF-AFFINE SETS AND MEASURES WITH OVERLAPS
    Barany, Balazs
    Michalrams
    Simon, Karoly
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) : 4427 - 4440
  • [4] THE BOX AND HAUSDORFF DIMENSION OF SELF-AFFINE SETS
    BEDFORD, T
    URBANSKI, M
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 : 627 - 644
  • [5] On the Hausdorff dimension of certain self-affine sets
    Abercrombie, AG
    Nair, R
    [J]. STUDIA MATHEMATICA, 2002, 152 (02) : 105 - 124
  • [6] Hausdorff dimension of the level sets of self-affine functions
    Peng, Li
    Kamae, Teturo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1400 - 1409
  • [7] ASSOUAD DIMENSION OF PLANAR SELF-AFFINE SETS
    Barany, Balazs
    Kaenmaki, Antti
    Rossi, Eino
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 1297 - 1326
  • [8] THE DIMENSION OF PROJECTIONS OF SELF-AFFINE SETS AND MEASURES
    Falconer, Kenneth
    Kempton, Tom
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) : 473 - 486
  • [9] EXPLICIT BOUNDS FOR THE HAUSDORFF DIMENSION OF CERTAIN SELF-AFFINE SETS
    RIEDI, RH
    [J]. FRACTALS IN THE NATURAL AND APPLIED SCIENCES, 1994, 41 : 313 - 324
  • [10] Hausdorff dimension of self-affine limit sets with an invariant direction
    Baranski, Krzysztof
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (04): : 1015 - 1023