Hausdorff dimension of planar self-affine sets and measures with overlaps

被引:13
|
作者
Hochman, Michael [1 ,2 ]
Rapaport, Ariel [1 ,3 ,4 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, Jerusalem, Israel
[2] Inst Adv Study, 1 Einstein Dr, Princeton, NJ 08540 USA
[3] Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
[4] Technion, Dept Math, Haifa, Israel
基金
美国国家科学基金会;
关键词
Hausdorff dimension; self-affine set; self-affine measure; Lyapunov dimension; LEDRAPPIER-YOUNG FORMULA; EQUAL HAUSDORFF; BOX;
D O I
10.4171/JEMS/1127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if mu is a self-affine measure in the plane whose defining IFS acts totally irreducibly on RP1 and satisfies an exponential separation condition, then its dimension is equal to its Lyapunov dimension. We also treat a class of reducible systems. This extends our previous work on the subject with Barany to the overlapping case.
引用
收藏
页码:2361 / 2441
页数:81
相关论文
共 50 条
  • [21] The Hausdorff dimension of the projections of self-affine carpets
    Ferguson, Andrew
    Jordan, Thomas
    Shmerkin, Pablo
    [J]. FUNDAMENTA MATHEMATICAE, 2010, 209 (03) : 193 - 213
  • [22] LOWER BOUNDS FOR THE HAUSDORFF DIMENSION OF N-DIMENSIONAL SELF-AFFINE SETS
    PAULSEN, WH
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 5 (06) : 909 - 931
  • [23] Dimension spectra of self-affine sets
    Takahashi, S
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2002, 127 (1) : 1 - 17
  • [24] DIMENSION OF SELF-AFFINE SETS WITH HOLES
    Ferguson, Andrew
    Jordan, Thomas
    Rams, Michal
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 63 - 88
  • [25] Dimension spectra of self-affine sets
    Satoshi Takahashi
    [J]. Israel Journal of Mathematics, 2002, 127 : 1 - 17
  • [26] On the dimension of triangular self-affine sets
    Barany, Balazs
    Rams, Michal
    Simon, Karoly
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1751 - 1783
  • [27] On the dimension of planar self-affine sets with non-invertible maps
    Barany, Balazs
    Kortvelyesi, Viktor
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [28] On the connectedness of planar self-affine sets
    Liu, Jing-Cheng
    Luo, Jun Jason
    Xie, Heng-Wen
    [J]. CHAOS SOLITONS & FRACTALS, 2014, 69 : 107 - 116
  • [29] BEURLING DIMENSION AND SELF-AFFINE MEASURES
    Tang, Min-Wei
    Wu, Zhi-Yi
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (06)
  • [30] Hausdorff dimension of boundaries of self-affine tiles in RN
    Veerman, JJP
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1998, 4 (02): : 159 - 182