Stability in the Kuramoto-Sakaguchi model for finite networks of identical oscillators

被引:8
|
作者
Mihara, Antonio [1 ]
Medrano-T, Rene O. [1 ]
机构
[1] Univ Fed Sao Paulo, Dept Fis, Campus Diadema, BR-09913030 Diadema, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synchronization; Stability; Kuramoto model; Perturbation analysis; Bifurcations; SYNCHRONIZATION; DYNAMICS;
D O I
10.1007/s11071-019-05210-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study the Kuramoto-Sakaguchi model composed by N identical phase oscillators symmetrically coupled. Ranging from local (one-to-one, R=1 couplings, we derive a general solution that describes the network dynamics close to an equilibrium. Therewith, we build stability diagrams according to N and R bringing to the light a rich scenery of attractors, repellers, saddles, and non-hyperbolic equilibriums. Our result also uncovers the obscure repulsive regime of the model through bifurcation analysis. Numerical simulations show great accordance with our analytical studies. The exact knowledge of the behavior close to equilibriums may be a fundamental step to investigate phenomena about synchronization in networks. As an example, in the end, we discuss the dynamics behind chimera states from our results.
引用
收藏
页码:539 / 550
页数:12
相关论文
共 50 条
  • [41] Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble
    Denis S. Goldobin
    Anastasiya V. Pimenova
    Michael Rosenblum
    Arkady Pikovsky
    The European Physical Journal Special Topics, 2017, 226 : 1921 - 1937
  • [42] On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators
    Kelly, David
    Gottwald, Georg A.
    CHAOS, 2011, 21 (02)
  • [43] Fisher Information and synchronisation transitions: A case-study of a finite size multi-network Kuramoto-Sakaguchi system
    Glavatskiy, Kirill
    Kalloniatis, Alexander C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 594
  • [44] On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation
    Amadori, Debora
    Ha, Seung-Yeal
    Park, Jinyeong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (02) : 978 - 1022
  • [45] Numerical and analytical investigation of the chimera state excitation conditions in the Kuramoto-Sakaguchi oscillator network
    Frolov, Nikita S.
    Goremyko, Mikhail V.
    Makarov, Vladimir V.
    Maksimenko, Vladimir A.
    Hramov, Alexander E.
    DYNAMICS AND FLUCTUATIONS IN BIOMEDICAL PHOTONICS XIV, 2017, 10063
  • [46] Synchrony-optimized networks of non-identical Kuramoto oscillators
    Brede, Markus
    PHYSICS LETTERS A, 2008, 372 (15) : 2618 - 2622
  • [47] When is sync globally stable in sparse networks of identical Kuramoto oscillators?
    Sokolov, Yury
    Ermentrout, G. Bard
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
  • [48] Bifurcations in the Sakaguchi-Kuramoto model
    Omel'chenko, Oleh E.
    Wolfrum, Matthias
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 263 : 74 - 85
  • [49] On the stability of the Kuramoto model of coupled nonlinear oscillators
    Jadbabaie, A
    Motee, N
    Barahona, M
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 4296 - 4301
  • [50] An analytical approach for the stability analysis of power networks through Kuramoto oscillators model?
    Farhangi, Reza
    Beheshti, Mohammad Taghi Hamidi
    Jamil, Mohsin
    Khan, Ashraf Ali
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126