Stability in the Kuramoto-Sakaguchi model for finite networks of identical oscillators

被引:8
|
作者
Mihara, Antonio [1 ]
Medrano-T, Rene O. [1 ]
机构
[1] Univ Fed Sao Paulo, Dept Fis, Campus Diadema, BR-09913030 Diadema, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synchronization; Stability; Kuramoto model; Perturbation analysis; Bifurcations; SYNCHRONIZATION; DYNAMICS;
D O I
10.1007/s11071-019-05210-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study the Kuramoto-Sakaguchi model composed by N identical phase oscillators symmetrically coupled. Ranging from local (one-to-one, R=1 couplings, we derive a general solution that describes the network dynamics close to an equilibrium. Therewith, we build stability diagrams according to N and R bringing to the light a rich scenery of attractors, repellers, saddles, and non-hyperbolic equilibriums. Our result also uncovers the obscure repulsive regime of the model through bifurcation analysis. Numerical simulations show great accordance with our analytical studies. The exact knowledge of the behavior close to equilibriums may be a fundamental step to investigate phenomena about synchronization in networks. As an example, in the end, we discuss the dynamics behind chimera states from our results.
引用
收藏
页码:539 / 550
页数:12
相关论文
共 50 条
  • [21] The Kuramoto-Sakaguchi nonlinear parabolic integrodifferential equation
    Lavrentiev, M
    Spigler, R
    PARTIAL DIFFERENTIAL EQUATIONS: THEORY AND NUMERICAL SOLUTION, 2000, 406 : 248 - 253
  • [22] Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model
    Brede, Markus
    Kalloniatis, Alexander C.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [23] Emergence of phase concentration for the Kuramoto-Sakaguchi equation
    Ha, Seung-Yeal
    Kim, Young-Heon
    Morales, Javier
    Park, Jinyeong
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 401
  • [24] Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators
    Ichiki, Akihisa
    Okumura, Keiji
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [25] Adversarial decision strategies in multiple network phased oscillators: The Blue-Green-Red Kuramoto-Sakaguchi model
    Zuparic, Mathew
    Angelova, Maia
    Zhu, Ye
    Kalloniatis, Alexander
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [26] Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity
    Banerjee, Amitava
    Acharyya, Muktish
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [27] Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation
    Acebrón, JA
    Lavrentiev, MM
    Spigler, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 239 - 263
  • [28] ASYMPTOTIC STABILITY OF THE PHASE-HOMOGENEOUS SOLUTION TO THE KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Choi, Young-Pil
    Ha, Seung-Yeal
    Xiao, Qinghua
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (03) : 3188 - 3235
  • [29] KURAMOTO ORDER PARAMETERS AND PHASE CONCENTRATION FOR THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Morales, Javier
    Zhang, Yinglong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (7-8) : 2579 - 2612
  • [30] A DIFFUSION LIMIT FOR THE PARABOLIC KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Ha, Seung-Yeal
    Shim, Woojoo
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1591 - 1638