Stability in the Kuramoto-Sakaguchi model for finite networks of identical oscillators

被引:8
|
作者
Mihara, Antonio [1 ]
Medrano-T, Rene O. [1 ]
机构
[1] Univ Fed Sao Paulo, Dept Fis, Campus Diadema, BR-09913030 Diadema, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synchronization; Stability; Kuramoto model; Perturbation analysis; Bifurcations; SYNCHRONIZATION; DYNAMICS;
D O I
10.1007/s11071-019-05210-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study the Kuramoto-Sakaguchi model composed by N identical phase oscillators symmetrically coupled. Ranging from local (one-to-one, R=1 couplings, we derive a general solution that describes the network dynamics close to an equilibrium. Therewith, we build stability diagrams according to N and R bringing to the light a rich scenery of attractors, repellers, saddles, and non-hyperbolic equilibriums. Our result also uncovers the obscure repulsive regime of the model through bifurcation analysis. Numerical simulations show great accordance with our analytical studies. The exact knowledge of the behavior close to equilibriums may be a fundamental step to investigate phenomena about synchronization in networks. As an example, in the end, we discuss the dynamics behind chimera states from our results.
引用
收藏
页码:539 / 550
页数:12
相关论文
共 50 条
  • [31] Optimal cost tuning of frustration: Achieving desired states in the Kuramoto-Sakaguchi model
    Rosell-Tarrago, Gemma
    Diaz-Guilera, Albert
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [32] Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter
    Chen, Bolun
    Engelbrecht, Jan R.
    Mirollo, Renato
    CHAOS, 2019, 29 (01)
  • [33] A Nonlocal Version of Wavefront Tracking Motivated by Kuramoto-Sakaguchi Equation
    Amadori, Debora
    Ha, Seung-Yeal
    Park, Jinyeong
    INNOVATIVE ALGORITHMS AND ANALYSIS, 2017, 16 : 1 - 24
  • [34] Two-network Kuramoto-Sakaguchi model under tempered stable Levy noise
    Kalloniatis, Alexander C.
    McLennan-Smith, Timothy A.
    Roberts, Dale O.
    Zuparic, Mathew L.
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [35] Synchronization of phase oscillators in the generalized Sakaguchi-Kuramoto model
    Xiao, Yu
    Jia, Wenjing
    Xu, Can
    Lu, Huaping
    Zheng, Zhigang
    EPL, 2017, 118 (06)
  • [36] Multiple Self-Locking in the Kuramoto-Sakaguchi System with Delay
    Wolfrum, Matthias
    Yanchuk, Serhiy
    D'Huys, Otti
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (03): : 1709 - 1725
  • [37] GLOBAL-IN-TIME SOLUTION AND STABILITY OF KURAMOTO-SAKAGUCHI EQUATION UNDER NON-LOCAL COUPLIN
    Honda, Hirotada
    NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (01) : 25 - 57
  • [38] Stable chimeras of non-locally coupled Kuramoto–Sakaguchi oscillators in a finite array
    Seungjae Lee
    Young Sul Cho
    Journal of the Korean Physical Society, 2021, 78 : 476 - 481
  • [39] EXISTENCE, UNIQUENESS, AND REGULARITY FOR THE KURAMOTO-SAKAGUCHI EQUATION WITH UNBOUNDEDLY SUPPORTED FREQUENCY DISTRIBUTION
    Lavrentiev, Mikhail M., Jr.
    Spigler, Renato
    Tani, Atusi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (9-10) : 879 - 892
  • [40] Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble
    Goldobin, Denis S.
    Pimenova, Anastasiya V.
    Rosenblum, Michael
    Pikovsky, Arkady
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (09): : 1921 - 1937