Stability in the Kuramoto-Sakaguchi model for finite networks of identical oscillators

被引:8
|
作者
Mihara, Antonio [1 ]
Medrano-T, Rene O. [1 ]
机构
[1] Univ Fed Sao Paulo, Dept Fis, Campus Diadema, BR-09913030 Diadema, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synchronization; Stability; Kuramoto model; Perturbation analysis; Bifurcations; SYNCHRONIZATION; DYNAMICS;
D O I
10.1007/s11071-019-05210-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study the Kuramoto-Sakaguchi model composed by N identical phase oscillators symmetrically coupled. Ranging from local (one-to-one, R=1 couplings, we derive a general solution that describes the network dynamics close to an equilibrium. Therewith, we build stability diagrams according to N and R bringing to the light a rich scenery of attractors, repellers, saddles, and non-hyperbolic equilibriums. Our result also uncovers the obscure repulsive regime of the model through bifurcation analysis. Numerical simulations show great accordance with our analytical studies. The exact knowledge of the behavior close to equilibriums may be a fundamental step to investigate phenomena about synchronization in networks. As an example, in the end, we discuss the dynamics behind chimera states from our results.
引用
收藏
页码:539 / 550
页数:12
相关论文
共 50 条
  • [1] Stability in the Kuramoto–Sakaguchi model for finite networks of identical oscillators
    Antonio Mihara
    Rene O. Medrano-T
    Nonlinear Dynamics, 2019, 98 : 539 - 550
  • [2] Configurational stability for the Kuramoto-Sakaguchi model
    Bronski, Jared C.
    Carty, Thomas
    DeVille, Lee
    CHAOS, 2018, 28 (10)
  • [3] Partial entrainment in the finite Kuramoto-Sakaguchi model
    De Smet, Filip
    Aeyels, Dirk
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 234 (02) : 81 - 89
  • [4] Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators
    Yue, Wenqi
    Smith, Lachlan D.
    Gottwald, Georg A.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [5] A stochastic approximation for the finite-size Kuramoto-Sakaguchi model
    Yue, Wenqi
    Gottwald, Georg A.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 468
  • [6] Chimera dynamics of generalized Kuramoto-Sakaguchi oscillators in two-population networks
    Lee, Seungjae
    Krischer, Katharina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (40)
  • [7] Metastability of multi-population Kuramoto-Sakaguchi oscillators
    Li, Bojun
    Uchida, Nariya
    CHAOS, 2025, 35 (01)
  • [8] Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation
    Ha, Seung-Yeal
    Xiao, Qinghua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2430 - 2457
  • [9] Stable chimeras of non-locally coupled Kuramoto-Sakaguchi oscillators in a finite array
    Lee, Seungjae
    Cho, Young Sul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 78 (06) : 476 - 481
  • [10] Semicontraction and Synchronization of Kuramoto-Sakaguchi Oscillator Networks
    Delabays, Robin
    Bullo, Francesco
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1566 - 1571