Adaptive higher-order spectral estimators

被引:4
|
作者
Gerard, David [1 ]
Hoff, Peter [2 ]
机构
[1] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[2] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 02期
基金
美国国家科学基金会;
关键词
Higher-order SVD; network; relational data; shrinkage; SURE; tensor; PRINCIPAL-COMPONENTS-ANALYSIS; CROSS-VALIDATION; EMPIRICAL BAYES; TENSOR REGRESSION; MATRIX; RANK; APPROXIMATION; MODELS; ALGORITHM; NUMBERS;
D O I
10.1214/17-EJS1330
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Many applications involve estimation of a signal matrix from a noisy data matrix. In such cases, it has been observed that estimators that shrink or truncate the singular values of the data matrix perform well when the signal matrix has approximately low rank. In this article, we generalize this approach to the estimation of a tensor of parameters from noisy tensor data. We develop new classes of estimators that shrink or threshold the mode-specific singular values from the higher-order singular value decomposition. These classes of estimators are indexed by tuning parameters, which we adaptively choose from the data by minimizing Stein's unbiased risk estimate. In particular, this procedure provides a way to estimate the multilinear rank of the underlying signal tensor. Using simulation studies under a variety of conditions, we show that our estimators perform well when the mean tensor has approximately low multilinear rank, and perform competitively when the signal tensor does not have approximately low multilinear rank. We illustrate the use of these methods in an application to multivariate relational data.
引用
收藏
页码:3703 / 3737
页数:35
相关论文
共 50 条
  • [1] Higher-order spectral estimators and nonlinear system identification
    Birkelund, Y
    Powers, EJ
    [J]. PROCEEDINGS OF THE ELEVENTH (2001) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 2001, : 78 - 84
  • [2] Higher-order properties of approximate estimators
    Kristensen, Dennis
    Salanie, Bernard
    [J]. JOURNAL OF ECONOMETRICS, 2017, 198 (02) : 189 - 208
  • [3] Higher-order approximations for Pitman estimators and for optimal compromise estimators
    Ventura, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 49 - 55
  • [4] HIGHER-ORDER SPECTRAL DENSITIES
    PEINELT, RH
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (05): : T553 - T556
  • [5] HIGHER-ORDER BIAS AND MSE OF NONLINEAR ESTIMATORS
    Bao, Yong
    Ullah, Aman
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 587 - 594
  • [6] The higher-order derivatives of spectral functions
    Sendov, Hristo S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) : 240 - 281
  • [7] Higher-order spectral shift for contractions
    Potapov, Denis
    Skripka, Anna
    Sukochev, Fedor
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 327 - 349
  • [8] THE SPECTRAL GEOMETRY OF THE HIGHER-ORDER LAPLACIAN
    GILKEY, PB
    [J]. DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 511 - 528
  • [9] Higher-order asymptotics of minimax estimators for time series
    Xu, Xiaofei
    Liu, Yan
    Taniguche, Masanobu
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (02) : 247 - 257
  • [10] Implementation aspects of various higher-order statistics estimators
    Leung, GCW
    Hatzinakos, D
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1996, 333B (03): : 349 - 367