THE SPECTRAL GEOMETRY OF THE HIGHER-ORDER LAPLACIAN

被引:44
|
作者
GILKEY, PB
机构
关键词
D O I
10.1215/S0012-7094-80-04731-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:511 / 528
页数:18
相关论文
共 50 条
  • [1] HIGHER-ORDER DIFFERENTIAL GEOMETRY
    FREDRICKS, GA
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1988, 14 (04): : 487 - 499
  • [2] HIGHER-ORDER SPECTRAL DENSITIES
    PEINELT, RH
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (05): : T553 - T556
  • [3] Multiorder Laplacian for synchronization in higher-order networks
    Lucas, Maxime
    Cencetti, Giulia
    Battiston, Federico
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [4] A Liouville theorem for the higher-order fractional Laplacian
    Zhuo, Ran
    Li, Yan
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
  • [5] The Persistent Laplacian for Data Science: Evaluating Higher-Order Persistent Spectral Representations of Data
    Davies, Thomas
    Wan, Zhengchao
    Sanchez-Garcia, Ruben
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [6] The geometry of linear higher-order recursion
    Dal Lago, U
    [J]. LICS 2005: 20th Annual IEEE Symposium on Logic in Computer Science - Proceedings, 2005, : 366 - 375
  • [7] Spectral investigation of higher-order Kerr effects in a tight-focusing geometry
    Heins, Alan
    Guo, Chunlei
    [J]. OPTICS EXPRESS, 2013, 21 (24): : 29401 - 29411
  • [8] The Geometry of Linear Higher-Order Recursion
    Dal Lago, Ugo
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2009, 10 (02)
  • [9] Geometry of Higher-Order Markov Chains
    Sturmfels, Bernd
    [J]. JOURNAL OF ALGEBRAIC STATISTICS, 2012, 3 (01) : 1 - 10
  • [10] The higher-order derivatives of spectral functions
    Sendov, Hristo S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) : 240 - 281