Higher-order approximations for Pitman estimators and for optimal compromise estimators

被引:2
|
作者
Ventura, L [1 ]
机构
[1] Univ Padua, Dept Stat Sci, I-35121 Padua, Italy
关键词
Laplace expansion for integrals; location and scale model; optimal compromise estimator; Pitman estimator;
D O I
10.2307/3315672
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Laplace approximations for the Pitman estimators of location or scale parameters, including terms O(n(-1)), are obtained. The resulting expressions involve the maximum-likelihood estimate and the derivatives of the log-likelihood function up to order 3. The results can be used to refine the approximations for the optimal compromise estimators for location parameters considered by Easton (1991). Some applications and Monte Carlo simulations are discussed.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [1] Compromise Pitman estimators
    Fournier, N.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (08) : 2656 - 2669
  • [2] Higher-order properties of approximate estimators
    Kristensen, Dennis
    Salanie, Bernard
    [J]. JOURNAL OF ECONOMETRICS, 2017, 198 (02) : 189 - 208
  • [3] Adaptive higher-order spectral estimators
    Gerard, David
    Hoff, Peter
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3703 - 3737
  • [4] HIGHER-ORDER BIAS AND MSE OF NONLINEAR ESTIMATORS
    Bao, Yong
    Ullah, Aman
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 587 - 594
  • [5] Higher-order asymptotics of minimax estimators for time series
    Xu, Xiaofei
    Liu, Yan
    Taniguche, Masanobu
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (02) : 247 - 257
  • [6] Implementation aspects of various higher-order statistics estimators
    Leung, GCW
    Hatzinakos, D
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1996, 333B (03): : 349 - 367
  • [7] A comparison of higher-order bias kernel density estimators
    Jones, MC
    Signorini, DF
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 1063 - 1073
  • [8] Comparison of maximum entropy and higher-order entropy estimators
    Golan, A
    Perloff, JM
    [J]. JOURNAL OF ECONOMETRICS, 2002, 107 (1-2) : 195 - 211
  • [9] HIGHER-ORDER APPROXIMATION OF IV ESTIMATORS WITH INVALID INSTRUMENTS
    Kang, Byunghoon
    [J]. ECONOMETRIC THEORY, 2022,
  • [10] Higher-order spectral estimators and nonlinear system identification
    Birkelund, Y
    Powers, EJ
    [J]. PROCEEDINGS OF THE ELEVENTH (2001) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 2001, : 78 - 84