Higher-order asymptotics of minimax estimators for time series

被引:0
|
作者
Xu, Xiaofei [1 ]
Liu, Yan [2 ]
Taniguche, Masanobu [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Waseda Univ, Inst Math Sci, Tokyo, Japan
[3] Waseda Univ, Dept Appl Math, Tokyo, Japan
[4] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan
关键词
Gaussian stationary process; spectral density; Bayes estimator; second-order bias; minimax estimator; whittle likelihood; TESTS;
D O I
10.1111/jtsa.12661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the minimax estimation of time series in view of higher-order asymptotic theory. Under the framework of Bayesian inference, we focus on the Bayes estimator and the Bayesian Whittle estimator for parameter estimation. It is shown that these estimators are minimax with respect to the Bayes risk of higher-order bias appeared in their asymptotic expansion. The minimax problem in the boundary issue with parameter on the boundary of parameter space is also discussed. Our theoretical discovery is justified by simulation studies even when the sample size is small.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [1] A class of indirect inference estimators: higher-order asymptotics and approximate bias correction
    Arvanitis, Stelios
    Demos, Antonis
    [J]. ECONOMETRICS JOURNAL, 2015, 18 (02): : 200 - 241
  • [2] Higher-order asymptotics in finance
    Chan, N. H.
    Yam, S. C. P.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (06): : 571 - 587
  • [3] Higher-order optimality conditions for a minimax
    VanLuu, D
    Oettli, W
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) : 509 - 516
  • [4] Higher-order organization of multivariate time series
    Santoro, Andrea
    Battiston, Federico
    Petri, Giovanni
    Amico, Enrico
    [J]. NATURE PHYSICS, 2023, 19 (02) : 221 - +
  • [5] Higher-order asymptotics for scoring rules
    Mameli, Valentina
    Ventura, Laura
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 165 : 13 - 26
  • [6] Between stability and higher-order asymptotics
    Ronchetti, E
    Ventura, L
    [J]. STATISTICS AND COMPUTING, 2001, 11 (01) : 67 - 73
  • [7] Between stability and higher-order asymptotics
    Elvezio Ronchetti
    Laura Ventura
    [J]. Statistics and Computing, 2001, 11 : 67 - 73
  • [8] Higher-order properties of approximate estimators
    Kristensen, Dennis
    Salanie, Bernard
    [J]. JOURNAL OF ECONOMETRICS, 2017, 198 (02) : 189 - 208
  • [9] Adaptive higher-order spectral estimators
    Gerard, David
    Hoff, Peter
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3703 - 3737
  • [10] LONG-TIME ASYMPTOTICS FOR INTEGRABLE SYSTEMS - HIGHER-ORDER THEORY
    DEIFT, PA
    ZHOU, X
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) : 175 - 191