Nonlinear dynamics of a continuous spring-block model of earthquake faults

被引:3
|
作者
Hahner, P [1 ]
Drossinos, Y [1 ]
机构
[1] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Va, Italy
来源
关键词
D O I
10.1088/0305-4470/31/10/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The continuous one-dimensional Burridge-Knopoff model is generalized by introducing plastic creep in addition to rigid sliding. The resulting equations, for an order parameter (sliding rate) and a control parameter (driving force), exhibit a velocity-strengthening and a velocity-softening instability. In the former regime, reminiscent of self-organized criticality in continuum systems, anomalous diffusion is described by a nonlinear diffusion equation. The latter regime, characteristic of deterministic chaos, is described by a time-dependent Ginzburg-Landau equation. Implications of the model with respect to earthquake predictability are discussed.
引用
收藏
页码:L185 / L191
页数:7
相关论文
共 50 条
  • [41] Regimes of frictional sliding of a spring-block system
    Putelat, Thibaut
    Dawes, Jonathan H. P.
    Willis, John R.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (01) : 27 - 53
  • [42] Spatial and temporal forecasting of large earthquakes in a spring-block model of a fault
    Aragon, L. E.
    Jagla, E. A.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 195 (03) : 1763 - 1772
  • [43] Scaling theory and dimensional arguments for periodic solutions of spring-block model
    Sarkardei, MR
    Jacobs, RL
    [J]. INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2003, 41 (04) : 323 - 330
  • [44] DYNAMICAL MEAN-FIELD THEORY FOR A SPRING-BLOCK MODEL OF FRACTURE
    ANDERSEN, JV
    [J]. PHYSICAL REVIEW B, 1994, 49 (14): : 9981 - 9984
  • [45] Disorder-driven phase transition in a spring-block type magnetization model
    Kovacs, K.
    Neda, Z.
    [J]. PHYSICS LETTERS A, 2007, 361 (1-2) : 18 - 23
  • [46] Spring-block approach for crack patterns in glass
    Horvat, Emoke-Agnes
    Jarai-Szabo, Ferenc
    Brechet, Yves
    Neda, Zoltan
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (04): : 926 - 935
  • [47] On the Possibility of Reproducing Utsu's Law for Earthquakes with a Spring-Block SOC Model
    Salinas-Martinez, Alfredo
    Perez-Oregon, Jennifer
    Aguilar-Molina, Ana Maria
    Munoz-Diosdado, Alejandro
    Angulo-Brown, Fernando
    [J]. ENTROPY, 2023, 25 (05)
  • [48] Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes
    Hainzl, S
    Zöller, G
    Kurths, J
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1999, 104 (B4) : 7243 - 7253
  • [49] Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes
    Tanekou, G. B.
    Fogang, C. F.
    Kengne, R.
    Pelap, F. B.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (04):
  • [50] Structural reinforcement in a spring-block model of stress-induced fracture propagation
    Esleta, G. A.
    Monterola, C.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (09) : 635 - 646