Scaling theory and dimensional arguments for periodic solutions of spring-block model

被引:0
|
作者
Sarkardei, MR
Jacobs, RL
机构
[1] Imperial Coll Sci, Dept Math, London SW7 2BZ, England
[2] Az Zahra Univ, Dept Phys, Tehran 19834, Iran
关键词
scaling theory; spring-block model; earthquake; dynamical model; plate tectonics;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Earlier, the authors have studied a one-dimensional version of the Burridge-Knopoff model [Burridge R & Knopff L, Bull Seismol Soc Am, 57 (1967) 341] of N-site chain of spring-blocks with stick-slip dynamics. Their numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions [Gutenberg B & Richter C F, Ann Geofis, 9 (1956) 1]. The authors showed that, there are stable periodic solutions in a parameter-space. They have presented elsewhere, arguments to justify the occurrence of lower edges of the window [Carlson J M & Langer J S, Phys Rev Lett, 62 (1989) 2632]. The authors follow here, the same arguments and show that the lower and upper edges of the window can be understood in terms of simple scaling arguments and can be presented as a function of two dimensionless parameters. They try to understand the origin of the results and give a theory to explain them. An improved formula for lower threshold driving velocity will be presented, which-is in good agreement with their numerical experiments inside the parameters window of periodic solutions. Also, they discuss different types of instability occurring in the system.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 50 条
  • [1] Complex Dynamical Behaviors in a Spring-Block Model with Periodic Perturbation
    Chen, Cun
    Li, Xueping
    Ren, Jingli
    [J]. COMPLEXITY, 2019, 2019
  • [2] ANALYTICAL TREATMENT FOR A SPRING-BLOCK MODEL
    DING, EJ
    LU, YN
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (23) : 3627 - 3630
  • [3] FRACTURING DESCRIBED BY A SPRING-BLOCK MODEL
    ANDERSEN, JV
    BRECHET, Y
    JENSEN, HJ
    [J]. EUROPHYSICS LETTERS, 1994, 26 (01): : 13 - 18
  • [4] HYSTERESIS IN A THEORETICAL SPRING-BLOCK MODEL
    LU, YN
    LIU, WS
    DING, EJ
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (25) : 4005 - 4008
  • [5] A SIMPLIFIED SPRING-BLOCK MODEL OF EARTHQUAKES
    BROWN, SR
    SCHOLZ, CH
    RUNDLE, JB
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (02) : 215 - 218
  • [6] A spring-block model for Barkhausen noise
    Kovács, K
    Brechet, Y
    Néda, Z
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2005, 13 (08) : 1341 - 1352
  • [7] Multistability and chaos in a spring-block model
    Ryabov, VB
    Ito, HM
    [J]. PHYSICAL REVIEW E, 1995, 52 (06): : 6101 - 6112
  • [8] Complex Dynamics of Spring-Block Earthquake Model Under Periodic Parameter Perturbations
    Kostic, Srdan
    Vasovic, Nebojsa
    Franovic, Igor
    Todorovic, Kristina
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2014, 9 (03):
  • [9] DYNAMICAL MEAN-FIELD THEORY FOR A SPRING-BLOCK MODEL OF FRACTURE
    ANDERSEN, JV
    [J]. PHYSICAL REVIEW B, 1994, 49 (14): : 9981 - 9984
  • [10] Critical behavior of a spring-block model for magnetization
    Kovacs, K.
    Neda, Z.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (03): : 1093 - 1097