A spring-block model for Barkhausen noise

被引:11
|
作者
Kovács, K
Brechet, Y
Néda, Z
机构
[1] Univ Babes Bolyai, Dept Phys, RO-400084 Cluj Napoca, Romania
[2] Ecole Natl Super Electrochim & Electrome Grenoble, Inst Natl Polytech Grenoble, LTPCM, F-38402 St Martin Dheres, France
关键词
D O I
10.1088/0965-0393/13/8/010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple mechanical spring-block model is introduced for studying magnetization phenomena and in particular the Barkhausen noise. The model captures and reproduces the accepted microscopic picture of domain wall movement and pinning. Computer simulations suggest that the model is able to reproduce the main characteristics of hysteresis loops and Barkhausen jumps. In the critical regime of the model the statistics of the obtained Barkhausen jumps follows several scaling laws, in qualitative agreement with experimental results. The simplicity and the invoked mechanical analogies make the model attractive for computer simulations and for pedagogical purposes.
引用
收藏
页码:1341 / 1352
页数:12
相关论文
共 50 条
  • [1] ANALYTICAL TREATMENT FOR A SPRING-BLOCK MODEL
    DING, EJ
    LU, YN
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (23) : 3627 - 3630
  • [2] FRACTURING DESCRIBED BY A SPRING-BLOCK MODEL
    ANDERSEN, JV
    BRECHET, Y
    JENSEN, HJ
    [J]. EUROPHYSICS LETTERS, 1994, 26 (01): : 13 - 18
  • [3] HYSTERESIS IN A THEORETICAL SPRING-BLOCK MODEL
    LU, YN
    LIU, WS
    DING, EJ
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (25) : 4005 - 4008
  • [4] A SIMPLIFIED SPRING-BLOCK MODEL OF EARTHQUAKES
    BROWN, SR
    SCHOLZ, CH
    RUNDLE, JB
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (02) : 215 - 218
  • [5] Multistability and chaos in a spring-block model
    Ryabov, VB
    Ito, HM
    [J]. PHYSICAL REVIEW E, 1995, 52 (06): : 6101 - 6112
  • [6] Critical behavior of a spring-block model for magnetization
    Kovacs, K.
    Neda, Z.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (03): : 1093 - 1097
  • [7] Properties of events in a spring-block model of earthquakes
    Mirzaev, AT
    Sharov, MV
    [J]. FIZIKA ZEMLI, 1997, (03): : 82 - 86
  • [8] PROPAGATIVE SLIPPING MODES IN A SPRING-BLOCK MODEL
    ESPANOL, P
    [J]. PHYSICAL REVIEW E, 1994, 50 (01): : 227 - 235
  • [9] Predictions of large events on a spring-block model
    Zhang, SD
    Huang, ZQ
    Ding, EJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15): : 4445 - 4455
  • [10] EFFECT of colored noise on the generation of seismic fault MOVEMENT: Analogy with spring-block model DYNAMICS
    Kostic, Srdan
    Vasovic, Nebojsa
    Todorovic, Kristina
    Franovic, Igor
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 135