Disorder-driven phase transition in a spring-block type magnetization model

被引:5
|
作者
Kovacs, K. [1 ]
Neda, Z. [1 ]
机构
[1] Univ Babes Bolyai, Dept Phys, RO-400084 Cluj Napoca, Romania
关键词
disorder-driven phase transition; Burridge-Knopoff type models; Monte Carlo simulation; Barkhausen noise;
D O I
10.1016/j.physleta.2006.08.086
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical behavior of a one-dimensional Burridge-Knopoff type spring-block model, aimed to describe magnetization phenomena, is studied by Monte Carlo type computer simulations. Disorder is introduced through randomly distributed pinning centers and the magnetization process is modeled through a relaxation dynamics. The distribution of avalanche sizes (jumps in magnetization) is studied for different disorder values. The results indicate that the model exhibits a disorder-driven phase transition. Estimates for some critical exponents and scaling laws are given. (c) 2006 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [1] Phase transition in a spring-block model of surface fracture
    Leung, K.-T.
    Andersen, J. V.
    Europhysics Letters, 38 (08):
  • [2] Critical behavior of a spring-block model for magnetization
    Kovacs, K.
    Neda, Z.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (03): : 1093 - 1097
  • [3] Phase transition in a spring-block model of surface fracture
    Leung, KT
    Andersen, JV
    EUROPHYSICS LETTERS, 1997, 38 (08): : 589 - 594
  • [4] ANALYTICAL TREATMENT FOR A SPRING-BLOCK MODEL
    DING, EJ
    LU, YN
    PHYSICAL REVIEW LETTERS, 1993, 70 (23) : 3627 - 3630
  • [5] FRACTURING DESCRIBED BY A SPRING-BLOCK MODEL
    ANDERSEN, JV
    BRECHET, Y
    JENSEN, HJ
    EUROPHYSICS LETTERS, 1994, 26 (01): : 13 - 18
  • [6] HYSTERESIS IN A THEORETICAL SPRING-BLOCK MODEL
    LU, YN
    LIU, WS
    DING, EJ
    PHYSICAL REVIEW LETTERS, 1994, 72 (25) : 4005 - 4008
  • [7] Structural disorder-driven topological phase transition in noncentrosymmetric BiTeI
    Corbae, Paul
    Hellman, Frances
    Griffin, Sinead M.
    PHYSICAL REVIEW B, 2021, 103 (21)
  • [8] A SIMPLIFIED SPRING-BLOCK MODEL OF EARTHQUAKES
    BROWN, SR
    SCHOLZ, CH
    RUNDLE, JB
    GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (02) : 215 - 218
  • [9] A spring-block model for Barkhausen noise
    Kovács, K
    Brechet, Y
    Néda, Z
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2005, 13 (08) : 1341 - 1352
  • [10] Multistability and chaos in a spring-block model
    Ryabov, VB
    Ito, HM
    PHYSICAL REVIEW E, 1995, 52 (06): : 6101 - 6112