The Labeled Multi-Bernoulli Filter for Multitarget Tracking With Glint Noise

被引:24
|
作者
Dong, Peng [1 ]
Jing, Zhongliang [1 ]
Leung, Henry [2 ]
Shen, Kai [1 ]
Li, Minzhe [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
基金
中国国家自然科学基金; 国家自然科学基金重大项目;
关键词
Noise measurement; Radio frequency; Target tracking; Gaussian distribution; Gamma distribution; Covariance matrices; Bayes methods; Glint noise; labeled multi-Bernoulli (LMB) filter; multitarget tracking (MTT); EXTENDED TARGET TRACKING; RANDOM FINITE SETS; ALGORITHM;
D O I
10.1109/TAES.2018.2884183
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A labeled multi-Bernoulli (LMB) filter is presented to perform multitarget tracking (MTT) for the glint noise. The measurement noise is modeled as a multivariate Student-t process. The variational Bayesian method is applied in the LMB framework with the augmented state. The predictive likelihood is calculated via minimizing the Kullback-Leibler divergence by the variational lower bound. Simulation results show that our approach is effective in MTT with the glint noise.
引用
收藏
页码:2253 / 2268
页数:16
相关论文
共 50 条
  • [31] The Multiple Model Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Scheel, Alexander
    Dietmayer, Klaus
    [J]. 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1574 - 1580
  • [32] On the Labeled Multi-Bernoulli Filter with Merged Measurements
    Saucan, Augustin A.
    Win, Moe Z.
    [J]. ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [33] Multipath Generalized Labeled Multi-Bernoulli Filter
    Yang, Bin
    Wang, Jun
    Wang, Wenguang
    Wei, Shaoming
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1423 - 1429
  • [34] Sensor Control for Multi-Object Tracking Using Labeled Multi-Bernoulli Filter
    Gostar, Amirali K.
    Hoseinnezhad, Reza
    Bab-Hadiashar, Alireza
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [35] Adaptive δ-Generalized Labeled Multi-Bernoulli Filter for Multi-Object Detection and Tracking
    Liu, Zong-Xiang
    Gan, Jie
    Li, Jin-Song
    Wu, Mian
    [J]. IEEE ACCESS, 2021, 9 : 2100 - 2109
  • [36] A variational Bayesian labeled multi-Bernoulli filter for tracking with inverse Wishart distribution
    Wang, Jinran
    Jing, Zhongliang
    Cheng, Jin
    Dong, Peng
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 219 - 225
  • [37] Extension of Nonlinear δ-generalized labeled multi-Bernoulli Filter in Multi-Target Tracking
    Hou, Liming
    Lian, Feng
    [J]. 2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2301 - 2306
  • [38] A hybrid labeled multi-Bernoulli tracking algorithm based on box particle filter
    Feng, Xin-Xi
    Chi, Luo-Jia
    Wang, Quan
    Miao, Lu
    [J]. Kongzhi yu Juece/Control and Decision, 2020, 35 (02): : 507 - 512
  • [39] Tracking the Splitting and Combination of Group Target With δ-Generalized Labeled Multi-Bernoulli Filter
    Gan, Linhai
    Wang, Gang
    [J]. IEEE ACCESS, 2019, 7 : 81156 - 81176
  • [40] Sensor Control for Selective Object Tracking Using Labeled Multi-Bernoulli Filter
    Panicker, Sabita
    Gostar, Amirali Khodadadian
    Bab-Haidashar, Alireza
    Hoseinnezhad, Reza
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2218 - 2224