On the Labeled Multi-Bernoulli Filter with Merged Measurements

被引:3
|
作者
Saucan, Augustin A. [1 ]
Win, Moe Z. [2 ]
机构
[1] MIT, Wireless Informat & Network Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Lab Informat & Decis Syst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
multi-object tracking; multi-Bernoulli; merged measurement; random finite sets; K-shortest paths; NETWORK LOCALIZATION; TRACKING; MODEL;
D O I
10.1109/icc40277.2020.9148688
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we propose a Labeled Multi-Bernoulli (LMB) filter for multi-object tracking with a merged measurement model. The finite resolution capabilities of practical sensing systems can lead to scenarios where multiple objects interact and generate merged measurements. In this work, we rely on the tractable LMB model for multi-object tracking and derive the Merged-Measurement LMB (MM-LMB) filter. Subsequently, we achieve an efficient implementation of the MM-LMB filter by relying on the K-shortest paths algorithm to find likely object-set partitions given a particular measurement set. Numerical results of our proposed filter show improved performance with respect to the standard LMB filter.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Vo, Ba-Tuong
    Vo, Ba-Ngu
    Dietmayer, Klaus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (12) : 3246 - 3260
  • [2] Multi -Target Joint Detection, Tracking and Classification with Merged Measurements Using Generalized Labeled Multi-Bernoulli Filter
    Chen, Dongwei
    Li, Cuiyun
    Ji, Hongbing
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 1120 - 1127
  • [3] The Adaptive Labeled Multi-Bernoulli Filter
    Danzer, Andreas
    Reuter, Stephan
    Dietmayer, Klaus
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1531 - 1538
  • [4] The Labeled Multi-Bernoulli SLAM Filter
    Deusch, Hendrik
    Reuter, Stephan
    Dietmayer, Klaus
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1561 - 1565
  • [5] The Multiple Model Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Scheel, Alexander
    Dietmayer, Klaus
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1574 - 1580
  • [6] Multipath Generalized Labeled Multi-Bernoulli Filter
    Yang, Bin
    Wang, Jun
    Wang, Wenguang
    Wei, Shaoming
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1423 - 1429
  • [7] A Generalized Labeled Multi-Bernoulli Filter for Maneuvering Targets
    Punchihewa, Yuthika
    Vo, Ba-Ngu
    Vo, Ba-Tuong
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 980 - 986
  • [8] A Fast Labeled Multi-Bernoulli Filter for Superpositional Sensors
    Mahler, Ronald
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646
  • [9] A Labeled multi-Bernoulli Filter for Multisource DOA Tracking
    Li, Gaiyou
    Wei, Ping
    Li, Yuansheng
    Chen, Yiqi
    ICCAIS 2019: THE 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES, 2019,
  • [10] Divergence Detectors for the δ-Generalized Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Vo, Ba-Tuong
    Wilking, Benjamin
    Meissner, Daniel
    Dietmayer, Klaus
    2013 WORKSHOP ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2013,