The Labeled Multi-Bernoulli Filter

被引:565
|
作者
Reuter, Stephan [1 ]
Vo, Ba-Tuong [2 ]
Vo, Ba-Ngu [2 ]
Dietmayer, Klaus [1 ]
机构
[1] Univ Ulm, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
[2] Curtin Univ, Dept Elect & Comp Engn, Bentley, WA 6102, Australia
基金
澳大利亚研究理事会;
关键词
Bayesian estimation; conjugate prior; marked point process; random finite set; target tracking; TRACKING; PHD; IMPLEMENTATION; ALGORITHM; ORDER;
D O I
10.1109/TSP.2014.2323064
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a generalization of the multi-Bernoulli filter called the labeled multi-Bernoulli filter that outputs target tracks. Moreover, the labeled multi-Bernoulli filter does not exhibit a cardinality bias due to a more accurate update approximation compared to the multi-Bernoulli filter by exploiting the conjugate prior form for labeled Random Finite Sets. The proposed filter can be interpreted as an efficient approximation of the delta-Generalized Labeled Multi-Bernoulli filter. It inherits the advantages of the multi-Bernoulli filter in regards to particle implementation and state estimation. It also inherits advantages of the delta-Generalized Labeled Multi-Bernoulli filter in that it outputs (labeled) target tracks and achieves better performance.
引用
收藏
页码:3246 / 3260
页数:15
相关论文
共 50 条
  • [1] The Adaptive Labeled Multi-Bernoulli Filter
    Danzer, Andreas
    Reuter, Stephan
    Dietmayer, Klaus
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1531 - 1538
  • [2] The Labeled Multi-Bernoulli SLAM Filter
    Deusch, Hendrik
    Reuter, Stephan
    Dietmayer, Klaus
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1561 - 1565
  • [3] The Multiple Model Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Scheel, Alexander
    Dietmayer, Klaus
    [J]. 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1574 - 1580
  • [4] On the Labeled Multi-Bernoulli Filter with Merged Measurements
    Saucan, Augustin A.
    Win, Moe Z.
    [J]. ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [5] Multipath Generalized Labeled Multi-Bernoulli Filter
    Yang, Bin
    Wang, Jun
    Wang, Wenguang
    Wei, Shaoming
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1423 - 1429
  • [6] A LABELED MULTI-BERNOULLI FILTER FOR SPACE OBJECT TRACKING
    Jones, Brandon A.
    Ba-Ngu Vo
    [J]. SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 1069 - 1088
  • [7] A Generalized Labeled Multi-Bernoulli Filter for Maneuvering Targets
    Punchihewa, Yuthika
    Vo, Ba-Ngu
    Vo, Ba-Tuong
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 980 - 986
  • [8] A Fast Labeled Multi-Bernoulli Filter for Superpositional Sensors
    Mahler, Ronald
    [J]. SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646
  • [9] Divergence Detectors for the δ-Generalized Labeled Multi-Bernoulli Filter
    Reuter, Stephan
    Vo, Ba-Tuong
    Wilking, Benjamin
    Meissner, Daniel
    Dietmayer, Klaus
    [J]. 2013 WORKSHOP ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2013,
  • [10] A Labeled multi-Bernoulli Filter for Multisource DOA Tracking
    Li, Gaiyou
    Wei, Ping
    Li, Yuansheng
    Chen, Yiqi
    [J]. ICCAIS 2019: THE 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES, 2019,