COMPLETE LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IMMERSED IN THE ANTI-DE SITTER SPACE

被引:0
|
作者
de Lima, Henrique Fernandes [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
anti-de Sitter space; complete spacelike submanifolds; parallel normalized mean curvature vector; linear Weingarten submanifolds; totally umbilical sub-manifolds; HYPERSURFACES; GEOMETRY; VECTOR;
D O I
10.4064/cm7941-5-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with n-dimensional complete linear Weingarten spacelike submanifolds having nonnegative sectional curvature and immersed in the anti-de Sitter space H-p(n+p) of index p with parallel normalized mean curvature vector field. We recall that a spacelike submanifold is said to be linear Weingarten when its mean and normalized scalar curvature functions are linearly related. We prove that under suitable constraints on the mean curvature function, such a spacelike submanifold must be either totally umbilical or isometric to a product M-1 x . . . x M-k, where the factors M-i are totally umbilical submanifolds of H(p)(n+p )which are mutually perpendicular along their intersections. Furthermore, when this spacelike submanifold is assumed to be compact (without boundary) with positive sectional curvature, we also obtain a rigidity result.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 50 条
  • [1] On the umbilicity of linear Weingarten spacelike submanifolds immersed in the de Sitter space
    Barboza, Weiller F. C.
    de Lima, Eudes L.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    BULLETIN OF MATHEMATICAL SCIENCES, 2022, 12 (02)
  • [2] Characterizing closed linear Weingarten spacelike submanifolds immersed in the de Sitter space
    de Lima, Eudes L.
    de Lima, Henrique F.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 322 - 334
  • [3] Characterizing closed linear Weingarten spacelike submanifolds immersed in the de Sitter space
    Eudes L. de Lima
    Henrique F. de Lima
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 322 - 334
  • [4] Linear Weingarten spacelike submanifolds in de Sitter space
    Yang, Dan
    Hou, Zhonghua
    JOURNAL OF GEOMETRY, 2012, 103 (01) : 177 - 190
  • [5] Linear Weingarten spacelike submanifolds in de Sitter space
    Dan Yang
    Zhonghua Hou
    Journal of Geometry, 2012, 103 (1) : 177 - 190
  • [6] Complete linear Weingarten spacelike submanifolds with higher codimension in the de Sitter space
    da Silva Araujo, Jogli Gidel
    de Lima, Henrique Fernandes
    dos Santos, Fabio Reis
    Lazaro Velasquez, Marco Antonio
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (04)
  • [7] ON THE PARABOLICITY OF LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IN THE DE SITTER SPACE
    Antonia, Railane
    de Lima, Henrique F.
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1589 - 1602
  • [8] Uniqueness and nullity of complete spacelike hypersurfaces immersed in the anti-de Sitter space
    Barboza W.F.C.
    de Lima H.F.
    Velásquez M.A.L.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 95 - 109
  • [9] Spacelike submanifolds of codimension two in anti-de Sitter space
    Pei, Donghe
    Wang, Yongqiao
    APPLICABLE ANALYSIS, 2019, 98 (06) : 1165 - 1180
  • [10] Lightlike hypersurfaces along spacelike submanifolds in anti-de Sitter space
    Izumiya, Shyuichi
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (11)