ON THE PARABOLICITY OF LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IN THE DE SITTER SPACE

被引:1
|
作者
Antonia, Railane [1 ]
de Lima, Henrique F. [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
De Sitter space; parallel normalized mean curvature vector; complete linear Weingarten spacelike submanifolds; L-parabolicity; totally umbilical submanifolds and hyperbolic cylinders;
D O I
10.2989/16073606.2021.1966545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with complete linear Weingarten spacelike submanifold immersed with parallel normalized mean curvature vector in de Sitter space S-p(n+p) of index p. Imposing appropriate restrictions on the values of the mean curvature function H, we establish a parabolicity criterion related to a suitable Cheng-Yau's modified operator and we use it to obtain sufficient conditions which guarantee that such a spacelike submanifold must be either totally umbilical or isometric to certain hyperbolic cylinders of S-p(n+p).
引用
收藏
页码:1589 / 1602
页数:14
相关论文
共 50 条
  • [1] Linear Weingarten spacelike submanifolds in de Sitter space
    Yang, Dan
    Hou, Zhonghua
    [J]. JOURNAL OF GEOMETRY, 2012, 103 (01) : 177 - 190
  • [2] Linear Weingarten spacelike submanifolds in de Sitter space
    Dan Yang
    Zhonghua Hou
    [J]. Journal of Geometry, 2012, 103 (1) : 177 - 190
  • [3] On the umbilicity of linear Weingarten spacelike submanifolds immersed in the de Sitter space
    Barboza, Weiller F. C.
    de Lima, Eudes L.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2022, 12 (02)
  • [4] Complete linear Weingarten spacelike submanifolds with higher codimension in the de Sitter space
    da Silva Araujo, Jogli Gidel
    de Lima, Henrique Fernandes
    dos Santos, Fabio Reis
    Lazaro Velasquez, Marco Antonio
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (04)
  • [5] Characterizing closed linear Weingarten spacelike submanifolds immersed in the de Sitter space
    Eudes L. de Lima
    Henrique F. de Lima
    [J]. São Paulo Journal of Mathematical Sciences, 2021, 15 : 322 - 334
  • [6] Characterizing closed linear Weingarten spacelike submanifolds immersed in the de Sitter space
    de Lima, Eudes L.
    de Lima, Henrique F.
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 322 - 334
  • [7] COMPLETE LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IMMERSED IN THE ANTI-DE SITTER SPACE
    de Lima, Henrique Fernandes
    [J]. COLLOQUIUM MATHEMATICUM, 2021, 165 (01) : 117 - 130
  • [8] Linear Weingarten spacelike hypersurfaces in de Sitter space
    Hou, Z. H.
    Yang, D.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (05) : 769 - 780
  • [9] On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space
    de Lima, Henrique F.
    Velasquez, Marco A. L.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (01): : 49 - 65
  • [10] On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space
    Henrique F. de Lima
    Marco A. L. Velásquez
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 49 - 65