Linear Weingarten spacelike submanifolds in de Sitter space

被引:0
|
作者
Dan Yang
Zhonghua Hou
机构
[1] Shenyang University,College of Science
[2] Dalian University of Technology,School of Mathematical Science
关键词
53C42; 53C40; Spacelike submanifolds; linear weingarten submanifolds; totally umbilical submanifolds; mean curvature vector;
D O I
10.1007/s00022-012-0110-x
中图分类号
学科分类号
摘要
Let Mn be a spacelike linear Weingarten submanifold in a de Sitter space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^{n+p}_{p}(1)}$$\end{document} with R = aH + b, where R and H are the normalized scalar curvature and the length of the mean curvature vector respectively. In this paper, we give intrinsic and extrinsic conditions for Mn to be totally umbilical, respectively.
引用
收藏
页码:177 / 190
页数:13
相关论文
共 50 条
  • [1] Linear Weingarten spacelike submanifolds in de Sitter space
    Yang, Dan
    Hou, Zhonghua
    [J]. JOURNAL OF GEOMETRY, 2012, 103 (01) : 177 - 190
  • [2] ON THE PARABOLICITY OF LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IN THE DE SITTER SPACE
    Antonia, Railane
    de Lima, Henrique F.
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1589 - 1602
  • [3] On the umbilicity of linear Weingarten spacelike submanifolds immersed in the de Sitter space
    Barboza, Weiller F. C.
    de Lima, Eudes L.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2022, 12 (02)
  • [4] Complete linear Weingarten spacelike submanifolds with higher codimension in the de Sitter space
    da Silva Araujo, Jogli Gidel
    de Lima, Henrique Fernandes
    dos Santos, Fabio Reis
    Lazaro Velasquez, Marco Antonio
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (04)
  • [5] Characterizing closed linear Weingarten spacelike submanifolds immersed in the de Sitter space
    Eudes L. de Lima
    Henrique F. de Lima
    [J]. São Paulo Journal of Mathematical Sciences, 2021, 15 : 322 - 334
  • [6] Characterizing closed linear Weingarten spacelike submanifolds immersed in the de Sitter space
    de Lima, Eudes L.
    de Lima, Henrique F.
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 322 - 334
  • [7] COMPLETE LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IMMERSED IN THE ANTI-DE SITTER SPACE
    de Lima, Henrique Fernandes
    [J]. COLLOQUIUM MATHEMATICUM, 2021, 165 (01) : 117 - 130
  • [8] Linear Weingarten spacelike hypersurfaces in de Sitter space
    Hou, Z. H.
    Yang, D.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (05) : 769 - 780
  • [9] On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space
    de Lima, Henrique F.
    Velasquez, Marco A. L.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (01): : 49 - 65
  • [10] On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space
    Henrique F. de Lima
    Marco A. L. Velásquez
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 49 - 65