COMPLETE LINEAR WEINGARTEN SPACELIKE SUBMANIFOLDS IMMERSED IN THE ANTI-DE SITTER SPACE

被引:0
|
作者
de Lima, Henrique Fernandes [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
anti-de Sitter space; complete spacelike submanifolds; parallel normalized mean curvature vector; linear Weingarten submanifolds; totally umbilical sub-manifolds; HYPERSURFACES; GEOMETRY; VECTOR;
D O I
10.4064/cm7941-5-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with n-dimensional complete linear Weingarten spacelike submanifolds having nonnegative sectional curvature and immersed in the anti-de Sitter space H-p(n+p) of index p with parallel normalized mean curvature vector field. We recall that a spacelike submanifold is said to be linear Weingarten when its mean and normalized scalar curvature functions are linearly related. We prove that under suitable constraints on the mean curvature function, such a spacelike submanifold must be either totally umbilical or isometric to a product M-1 x . . . x M-k, where the factors M-i are totally umbilical submanifolds of H(p)(n+p )which are mutually perpendicular along their intersections. Furthermore, when this spacelike submanifold is assumed to be compact (without boundary) with positive sectional curvature, we also obtain a rigidity result.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 50 条
  • [21] Weingarten spacelike hypersurfaces in a de Sitter space
    Chen, Junfeng
    Shu, Shichang
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 387 - 406
  • [22] SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE
    Kasedou, Masaki
    DEMONSTRATIO MATHEMATICA, 2010, 43 (02) : 401 - 418
  • [23] On the linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space
    Jogli G. Araújo
    Weiller F. C. Barboza
    Henrique F. de Lima
    Marco Antonio L. Velásquez
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 267 - 282
  • [24] NEW CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN THE DE SITTER SPACE
    Alias, Luis J.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 292 (01) : 1 - 19
  • [25] On the linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space
    Araujo, Jogli G.
    Barboza, Weiller F. C.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (02): : 267 - 282
  • [26] SPACELIKE HYPERSURFACES WITH CONSTANT S OR K IN DE SITTER SPACE OR ANTI-DE SITTER SPACE
    Shu, S.
    Chen, J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (04): : 835 - 855
  • [27] A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space
    Henrique F. de Lima
    Fábio R. dos Santos
    Lucas S. Rocha
    Archiv der Mathematik, 2021, 116 : 683 - 691
  • [28] COMPLETE SPACELIKE HYPERSURFACES IN THE ANTI-DE SITTER SPACE: RIGIDITY, NONEXISTENCE AND CURVATURE ESTIMATES
    Barboza, Weiller F. C.
    De Lima, Henrique F.
    Oliveira, Arlandson M. S.
    Velasquez, Marco Antonio L.
    COLLOQUIUM MATHEMATICUM, 2022, 170 (02) : 253 - 273
  • [29] A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Rocha, Lucas S.
    ARCHIV DER MATHEMATIK, 2021, 116 (06) : 683 - 691
  • [30] Complete Linear Weingarten Spacelike Hypersurfaces Immersed in a Locally Symmetric Lorentz Space
    Henrique F. de Lima
    Joseílson R. de Lima
    Results in Mathematics, 2013, 63 : 865 - 876