Flux diffusion and the porous medium equation

被引:12
|
作者
Gilchrist, J [1 ]
机构
[1] Univ Grenoble 1, CNRS, Ctr Rech Tres Basses Temp, Lab Associe, F-38042 Grenoble, France
来源
PHYSICA C | 1997年 / 291卷 / 1-2期
关键词
flux creep; flux flow; AC susceptibility; magnetoresistance;
D O I
10.1016/S0921-4534(97)01685-7
中图分类号
O59 [应用物理学];
学科分类号
摘要
Flux-flow problems in slabs and cylinders, and flux-creep problems in slabs, simplified, reduce to the porous medium equation with possible sign changes. The equation's known self-similar solutions apply exactly or asymptotically if the boundary conditions are right. Flux-creep in cylinders corresponds to a modified porous medium equation that has different explicit solutions and different focusing solutions. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [21] THE POROUS-MEDIUM EQUATION
    ARONSON, DG
    LECTURE NOTES IN MATHEMATICS, 1986, 1224 : 1 - 46
  • [22] Pattern formation in a flux limited reaction-diffusion equation of porous media type
    Calvo, J.
    Campos, J.
    Caselles, V.
    Sanchez, O.
    Soler, J.
    INVENTIONES MATHEMATICAE, 2016, 206 (01) : 57 - 108
  • [23] Particle diffusion in a porous medium
    Ippolito, I
    Samson, L
    Bourles, S
    Bideau, D
    POWDERS & GRAINS 97, 1997, : 551 - 554
  • [24] Modeling of Diffusion in Porous Medium
    Skramlik, Jan
    Novotny, Miloslav
    Suhajda, Karel
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [25] Analysis and mean-field derivation of a porous-medium equation with fractional diffusion
    Chen, Li
    Holzinger, Alexandra
    Juengel, Ansgar
    Zamponi, Nicola
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (11) : 2217 - 2269
  • [26] On the n-Dimensional Porous Medium Diffusion Equation and Global Actions of the Symmetry Group
    Franco, Jose A.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [27] On the Well-Posedness Problem of the Anisotropic Porous Medium Equation with a Variable Diffusion Coefficient
    Zhan, Huashui
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (02): : 135 - 149
  • [28] A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void
    Zhou, Jun
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 6 - 11
  • [29] ASYMPTOTIC FLUX AND THE DIFFUSION EQUATION.
    Duracz, T.
    Zelazny, R.
    Atomkernenergie, Kerntechnik, 1981, 37 (04): : 281 - 283
  • [30] The porous medium equation with measure data
    Lukkari, Teemu
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) : 711 - 729