Flux diffusion and the porous medium equation

被引:12
|
作者
Gilchrist, J [1 ]
机构
[1] Univ Grenoble 1, CNRS, Ctr Rech Tres Basses Temp, Lab Associe, F-38042 Grenoble, France
来源
PHYSICA C | 1997年 / 291卷 / 1-2期
关键词
flux creep; flux flow; AC susceptibility; magnetoresistance;
D O I
10.1016/S0921-4534(97)01685-7
中图分类号
O59 [应用物理学];
学科分类号
摘要
Flux-flow problems in slabs and cylinders, and flux-creep problems in slabs, simplified, reduce to the porous medium equation with possible sign changes. The equation's known self-similar solutions apply exactly or asymptotically if the boundary conditions are right. Flux-creep in cylinders corresponds to a modified porous medium equation that has different explicit solutions and different focusing solutions. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [31] Potential symmetries of a porous medium equation
    J Phys A Math Gen, 18 (5919):
  • [32] The Toda Flow as a Porous Medium Equation
    Boris Khesin
    Klas Modin
    Communications in Mathematical Physics, 2023, 401 : 1879 - 1898
  • [33] Boundary Regularity for the Porous Medium Equation
    Bjorn, Anders
    Bjorn, Jana
    Gianazzac, Ugo
    Siljander, Juhana
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (02) : 493 - 538
  • [34] Conditional symmetry of a porous medium equation
    Physica D: Nonlinear Phenomena, 1998, 122 (1-4): : 178 - 186
  • [35] The Toda Flow as a Porous Medium Equation
    Khesin, Boris
    Modin, Klas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (02) : 1879 - 1898
  • [36] REGULARITY OF THE INTERFACE FOR THE POROUS MEDIUM EQUATION
    Ko, Youngsang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [37] RANDOM WALKS AND THE POROUS MEDIUM EQUATION
    Cortazar, C.
    Elgueta, M.
    Martinez, S.
    Rossi, J. D.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 149 - 155
  • [38] Potential symmetries of a porous medium equation
    Gandarias, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18): : 5919 - 5934
  • [39] A microscopic mechanism for the porous medium equation
    Feng, S
    Iscoe, I
    Seppalainen, T
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 66 (02) : 147 - 182
  • [40] A Rado theorem for the porous medium equation
    Fedchenko, Dmitry
    Tarkhanov, Nikolai
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2018, 24 (02): : 427 - 437