The knockoff filter for FDR control in group-sparse and multitask regression

被引:0
|
作者
Dai, Ran [1 ]
Barber, Rina Foygel [1 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
关键词
SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the group knockoff filter, a method for false discovery rate control in a linear regression setting where the features are grouped, and we would like to select a set of relevant groups which have a nonzero effect on the response. By considering the set of true and false discoveries at the group level, this method gains power relative to sparse regression methods. We also apply our method to the multitask regression problem where multiple response variables share similar sparsity patterns across the set of possible features. Empirically, the group knockoff filter successfully controls false discoveries at the group level in both settings, with substantially more discoveries made by leveraging the group structure.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] GROUP-SPARSE SUBSPACE CLUSTERING WITH MISSING DATA
    Pimentel-Alarcon, D.
    Balzano, L.
    Marcia, R.
    Nowak, R.
    Willett, R.
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [22] Integrative multi-view regression: Bridging group-sparse and low-rank models
    Li, Gen
    Liu, Xiaokang
    Chen, Kun
    BIOMETRICS, 2019, 75 (02) : 593 - 602
  • [23] Informed Group-Sparse Representation for Singing Voice Separation
    Chan, Tak-Shing T.
    Yang, Yi-Hsuan
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (02) : 156 - 160
  • [24] Tractability of Interpretability via Selection of Group-Sparse Models
    Bhan, Nirav
    Baldassaffe, Luca
    Cevher, Volkan
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 632 - 632
  • [25] Tractability of Interpretability via Selection of Group-Sparse Models
    Bhan, Nirav
    Baldassarre, Luca
    Cevher, Volkan
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1037 - 1041
  • [26] A Novel Generalized Group-Sparse Mixture Adaptive Filtering Algorithm
    Li, Yingsong
    Cherednichenko, Aleksey
    Jiang, Zhengxiong
    Shi, Wanlu
    Wu, Jinqiu
    SYMMETRY-BASEL, 2019, 11 (05):
  • [27] SELECTIVE INFERENCE FOR SPARSE MULTITASK REGRESSION WITH APPLICATIONS IN NEUROIMAGING
    Panigrahi, Snigdha
    Stewart, Natasha
    Sripada, Chandra
    Levina, Elizaveta
    ANNALS OF APPLIED STATISTICS, 2024, 18 (01): : 445 - 467
  • [28] Fast Regularized Discrete Optimal Transport with Group-Sparse Regularizers
    Ida, Yasutoshi
    Kanai, Sekitoshi
    Adachi, Kazuki
    Kumagai, Atsutoshi
    Fujiwara, Yasuhiro
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 7980 - 7987
  • [29] MARKOV-TREE BAYESIAN GROUP-SPARSE MODELING WITH WAVELETS
    Zhang, Ganchi
    Kingsbury, Nick
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [30] ONLINE GROUP-SPARSE ESTIMATION USING THE COVARIANCE FITTING CRITERION
    Kronvall, Ted
    Adalbjornsson, Stefan Ingi
    Nadig, Santhosh
    Jakobsson, Andreas
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2101 - 2105