GROUP-SPARSE SUBSPACE CLUSTERING WITH MISSING DATA

被引:0
|
作者
Pimentel-Alarcon, D. [1 ]
Balzano, L. [2 ]
Marcia, R. [3 ]
Nowak, R. [1 ]
Willett, R. [1 ]
机构
[1] Univ Wisconsin Madison, Madison, WI 53706 USA
[2] Univ Michigan Ann Arbor, Ann Arbor, MI USA
[3] Univ Calif Merced, Merced, CA USA
关键词
Low-rank matrix completion; low-dimensional models; lasso; sparsity; subspace clustering; missing data; alternating optimization; compressed sensing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper explores algorithms for subspace clustering with missing data. In many high-dimensional data analysis settings, data points lie in or near a union of subspaces. Subspace clustering is the process of estimating these subspaces and assigning each data point to one of them. However, in many modern applications the data are severely corrupted by missing values. This paper describes two novel methods for subspace clustering with missing data: (a) group-sparse subspace clustering (GSSC), which is based on group-sparsity and alternating minimization, and (b) mixture subspace clustering (MSC), which models each data point as a convex combination of its projections onto all subspaces in the union. Both of these algorithms are shown to converge to a local minimum, and experimental results show that they outperform the previous state-of-the-art, with GSSC yielding the highest overall clustering accuracy.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] SPARSE SUBSPACE CLUSTERING WITH MISSING AND CORRUPTED DATA
    Charles, Zachary
    Jalali, Amin
    Willett, Rebecca
    [J]. 2018 IEEE DATA SCIENCE WORKSHOP (DSW), 2018, : 180 - 184
  • [2] Sparse Subspace Clustering with Missing Entries
    Yang, Congyuan
    Robinson, Daniel
    Vidal, Rene
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2463 - 2472
  • [3] Theoretical Analysis of Sparse Subspace Clustering with Missing Entries
    Tsakiris, Manolis C.
    Vidal, Rene
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [4] Sparse Subspace Clustering for Hyperspectral Images with Missing Pixels
    Bacca, Jorge
    Sanchez, Karen
    Arguello, Henry
    [J]. 2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [5] Sparse Subspace Clustering for Stream Data
    Chen, Ken
    Tang, Yong
    Wei, Long
    Wang, Pengfei
    Liu, Yong
    Jin, Zhongming
    [J]. IEEE ACCESS, 2021, 9 : 57271 - 57279
  • [6] Sparse subspace clustering for data with missing entries and high-rank matrix completion
    Fan, Jicong
    Chow, Tommy W. S.
    [J]. NEURAL NETWORKS, 2017, 93 : 36 - 44
  • [7] ON THE SAMPLE COMPLEXITY OF SUBSPACE CLUSTERING WITH MISSING DATA
    Pimentel, D.
    Nowak, R.
    Balzano, L.
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 280 - 283
  • [8] SPARSE SUBSPACE CLUSTERING FOR EVOLVING DATA STREAMS
    Sui, Jinping
    Liu, Zhen
    Liu, Li
    Jung, Alexander
    Liu, Tianpeng
    Peng, Bo
    Li, Xiang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7455 - 7459
  • [9] GROUP-SPARSE MATRIX RECOVERY
    Zeng, Xiangrong
    Figueiredo, Mario A. T.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [10] Sparse Subspace Clustering
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2782 - 2789