Quantization of quadratic Lienard-type equations by preserving Noether symmetries

被引:12
|
作者
Gubbiotti, G. [1 ,2 ]
Nucci, M. C. [3 ,4 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy
[3] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[4] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
关键词
Lie and Noether symmetries; Quadratic Lienard-type equation; Isotonic oscillator; Classical quantization; DEPENDENT EFFECTIVE MASSES; DIFFERENTIAL-EQUATIONS; NONLINEAR OSCILLATORS; LIE SYMMETRIES; JACOBI; POINT; LAGRANGIANS; MECHANICS;
D O I
10.1016/j.jmaa.2014.09.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical quantization of a family of a quadratic Lienard-type equation (Lienard II equation) is achieved by a quantization scheme (Nucci 2011) [28] that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schrodinger equation. This method straightforwardly yields the Schrodinger equation as given in Choudhury and Guha (2013) [6]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1235 / 1246
页数:12
相关论文
共 50 条
  • [41] Equivalent Lienard-type models for a fluid transmission line
    Torres, Lizeth
    Delgado Aguinaga, Jorge Alejandro
    Besancon, Gildas
    Verde, Cristina
    Begovich, Ofelia
    COMPTES RENDUS MECANIQUE, 2016, 344 (08): : 582 - 595
  • [42] Synchronization of Lienard-type Oscillators in Uniform Electrical Networks
    Sinha, Mohit
    Dorfler, Florian
    Johnson, Brian B.
    Dhople, Sairaj V.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4311 - 4316
  • [43] UNIQUENESS OF LIMIT-CYCLES IN A LIENARD-TYPE SYSTEM
    HUANG, XC
    SUN, PT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (02) : 348 - 359
  • [44] PERIODIC SOLUTIONS FOR p-LAPLACIAN SYSTEMS OF LIENARD-TYPE
    Liu, Wenbin
    Feng, Zhaosheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (05) : 1393 - 1400
  • [45] A note on ''uniqueness of limit cycles in a Lienard-type system''
    Kooij, RE
    Jianhua, SH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) : 260 - 276
  • [46] The Lie symmetry group of the general Lienard-type equation
    Figula, Agota
    Horvath, Gabor
    Milkovszki, Tamas
    Muzsnay, Zoltan
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2020, 27 (02) : 185 - 198
  • [47] Synchronization analysis of coupled Lienard-type oscillators by averaging
    Tuna, S. Emre
    AUTOMATICA, 2012, 48 (08) : 1885 - 1891
  • [48] Synchronization of Lienard-type Oscillators in Heterogenous Electrical Networks
    Sinha, Mohit
    Dorfler, Florian
    Johnson, Brian B.
    Dhople, Sairaj V.
    2018 INDIAN CONTROL CONFERENCE (ICC), 2018, : 240 - 245
  • [49] Integrable coupled Lienard-type systems with balanced loss and gain
    Sinha, Debdeep
    Ghosh, Pijush K.
    ANNALS OF PHYSICS, 2019, 400 : 109 - 127
  • [50] NOETHER SYMMETRIES OF GEODESIC EQUATIONS IN SPACETIMES
    Hussain, Ibrar
    PROCEEDINGS OF THE 13TH REGIONAL CONFERENCE ON MATHEMATICAL PHYSICS, 2013, : 116 - 121