Quantization of quadratic Lienard-type equations by preserving Noether symmetries

被引:12
|
作者
Gubbiotti, G. [1 ,2 ]
Nucci, M. C. [3 ,4 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy
[3] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[4] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
关键词
Lie and Noether symmetries; Quadratic Lienard-type equation; Isotonic oscillator; Classical quantization; DEPENDENT EFFECTIVE MASSES; DIFFERENTIAL-EQUATIONS; NONLINEAR OSCILLATORS; LIE SYMMETRIES; JACOBI; POINT; LAGRANGIANS; MECHANICS;
D O I
10.1016/j.jmaa.2014.09.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical quantization of a family of a quadratic Lienard-type equation (Lienard II equation) is achieved by a quantization scheme (Nucci 2011) [28] that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schrodinger equation. This method straightforwardly yields the Schrodinger equation as given in Choudhury and Guha (2013) [6]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1235 / 1246
页数:12
相关论文
共 50 条