Equivalent Lienard-type models for a fluid transmission line

被引:4
|
作者
Torres, Lizeth [1 ,2 ]
Delgado Aguinaga, Jorge Alejandro [3 ]
Besancon, Gildas [4 ,5 ]
Verde, Cristina [1 ]
Begovich, Ofelia [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City 04510, DF, Mexico
[2] Catedras CONACYT, Mexico City, DF, Mexico
[3] Ctr Invest & Estudios Avanzados CINVESTAV, Unidad Guadalajara, Zapopan 45019, Jalisco, Mexico
[4] Univ Grenoble Alpes, GIPSA Lab, F-38000 Grenoble, France
[5] CNRS, GIPSA Lab, F-38000 Grenoble, France
来源
COMPTES RENDUS MECANIQUE | 2016年 / 344卷 / 08期
关键词
Pipelines; Fluid dynamics; Lienard equation; State observers; Parameter identification; SYSTEM-IDENTIFICATION; LIMIT-CYCLES; OSCILLATOR; PIPELINES; EQUATIONS;
D O I
10.1016/j.crme.2016.04.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The main contribution of this paper is the derivation of spatiotemporal Lienard-type models for expressing the dynamical behavior of a fluid transmission line. The derivation is carried out from a quasilinear hyperbolic system made of a momentum equation and a continuity one. An advantage of these types of models is that they are suitable for formulating estimation algorithms. This claim is confirmed in the present paper for the case of fluid dynamics, since the article presents the conception and evaluation of a Lienard model-based observer that estimates the parameters of a pipeline such as the friction factor, the equivalent length and the wave speed. To show the potentiality of the approach, results based on some simulation and experimental tests are presented. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:582 / 595
页数:14
相关论文
共 50 条
  • [1] Lienard-type chemical oscillator
    Ghosh, Shyamolina
    Ray, Deb Shankar
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (03):
  • [2] On fractional lienard-type systems
    Fleitas, A.
    Mendez-Bermudez, J. A.
    Napoles Valdes, J. E.
    Sigarreta Almira, J. M.
    REVISTA MEXICANA DE FISICA, 2019, 65 (06) : 618 - 625
  • [3] LIENARD-TYPE EQUATIONS AND THE EPIDEMIOLOGY OF MALARIA
    MOREIRA, HN
    ECOLOGICAL MODELLING, 1992, 60 (02) : 139 - 150
  • [4] Integrable Nonautonomous Lienard-Type Equations
    Sinelshchikov, D. I.
    Kudryashov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (02) : 1230 - 1240
  • [5] Unusual lienard-type nonlinear oscillator
    Chandrasekar, VK
    Senthilvelan, M
    Lakshmanan, M
    PHYSICAL REVIEW E, 2005, 72 (06):
  • [6] Lienard-type models for the simulation of the action potential of cardiac nodal cells
    Podziemski, P.
    Zebrowski, J. J.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 261 : 52 - 61
  • [8] Homoclinic orbits for the planar system of Lienard-type
    Hayashi, Makoto
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2013, 12 (02) : 315 - 322
  • [9] ON THE NONEXISTENCE OF PERIODIC SOLUTIONS FOR LIENARD-TYPE EQUATIONS
    ZHOU Jin(Department of Applied Mathematics
    Systems Science and Mathematical Sciences, 1999, (02) : 184 - 192
  • [10] Periodic solutions of relativistic Lienard-type equations
    Aktas, Mustafa F.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (38) : 1 - 12