Equivalent Lienard-type models for a fluid transmission line

被引:4
|
作者
Torres, Lizeth [1 ,2 ]
Delgado Aguinaga, Jorge Alejandro [3 ]
Besancon, Gildas [4 ,5 ]
Verde, Cristina [1 ]
Begovich, Ofelia [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City 04510, DF, Mexico
[2] Catedras CONACYT, Mexico City, DF, Mexico
[3] Ctr Invest & Estudios Avanzados CINVESTAV, Unidad Guadalajara, Zapopan 45019, Jalisco, Mexico
[4] Univ Grenoble Alpes, GIPSA Lab, F-38000 Grenoble, France
[5] CNRS, GIPSA Lab, F-38000 Grenoble, France
来源
COMPTES RENDUS MECANIQUE | 2016年 / 344卷 / 08期
关键词
Pipelines; Fluid dynamics; Lienard equation; State observers; Parameter identification; SYSTEM-IDENTIFICATION; LIMIT-CYCLES; OSCILLATOR; PIPELINES; EQUATIONS;
D O I
10.1016/j.crme.2016.04.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The main contribution of this paper is the derivation of spatiotemporal Lienard-type models for expressing the dynamical behavior of a fluid transmission line. The derivation is carried out from a quasilinear hyperbolic system made of a momentum equation and a continuity one. An advantage of these types of models is that they are suitable for formulating estimation algorithms. This claim is confirmed in the present paper for the case of fluid dynamics, since the article presents the conception and evaluation of a Lienard model-based observer that estimates the parameters of a pipeline such as the friction factor, the equivalent length and the wave speed. To show the potentiality of the approach, results based on some simulation and experimental tests are presented. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:582 / 595
页数:14
相关论文
共 50 条
  • [21] A note on ''uniqueness of limit cycles in a Lienard-type system''
    Kooij, RE
    Jianhua, SH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) : 260 - 276
  • [22] The Lie symmetry group of the general Lienard-type equation
    Figula, Agota
    Horvath, Gabor
    Milkovszki, Tamas
    Muzsnay, Zoltan
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2020, 27 (02) : 185 - 198
  • [23] Synchronization analysis of coupled Lienard-type oscillators by averaging
    Tuna, S. Emre
    AUTOMATICA, 2012, 48 (08) : 1885 - 1891
  • [24] Synchronization of Lienard-type Oscillators in Heterogenous Electrical Networks
    Sinha, Mohit
    Dorfler, Florian
    Johnson, Brian B.
    Dhople, Sairaj V.
    2018 INDIAN CONTROL CONFERENCE (ICC), 2018, : 240 - 245
  • [25] On the existence and uniqueness of periodic solutions for Lienard-type equations
    Jin, Z
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (12) : 1463 - 1470
  • [26] Integrable coupled Lienard-type systems with balanced loss and gain
    Sinha, Debdeep
    Ghosh, Pijush K.
    ANNALS OF PHYSICS, 2019, 400 : 109 - 127
  • [27] On the Jacobi last multipliers and Lagrangians for a family of Lienard-type equations
    Sinelshchikov, Dmitry I.
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 307 : 257 - 264
  • [28] New non-standard Lagrangians for the Lienard-type equations
    Kudryashov, Nikolad A.
    Sinelshchikov, Dmitry I.
    APPLIED MATHEMATICS LETTERS, 2017, 63 : 124 - 129
  • [29] EXISTENCE OF SOME PERIODIC-SOLUTIONS IN LIENARD-TYPE EQUATIONS
    AMELKIN, VV
    ZHAVNERCHIK, VE
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1987, (03): : 3 - 5
  • [30] Quantization of quadratic Lienard-type equations by preserving Noether symmetries
    Gubbiotti, G.
    Nucci, M. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1235 - 1246