Defect solitons supported by nonlinear fractional Schrodinger equation with a defective lattice

被引:4
|
作者
Meng, Yunji [1 ]
Ning, Renxia [1 ]
Ma, Kun [1 ]
Jiao, Zheng [1 ]
Lv, Haijiang [1 ]
Liu, Youwen [2 ]
机构
[1] Huangshan Univ, Sch Informat Engn, Huangshan 245041, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Jiangsu, Peoples R China
关键词
Defect solitons; nonlinear fractional Schrodinger equation; defective lattice; GAP SOLITONS; DYNAMICS; BEAMS;
D O I
10.1142/S0218863519500218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate numerically the existence and stability of defect solitons in nonlinear fractional Schrodinger equation. For positive defects, defect solitons are only existent in the semi-infinite gap and are stable in their whole existence domain irrespective of Levy index. For moderate deep defects, defect solitons are existent in both the semi-infinite gap and first gap, and their instability domains occur in the low-power region of the semi-infinite gap. While for deep enough defects, stable defect solitons can be found in the second gap. Increasing the strength of defect (or Levy index) will narrow (or broaden) the existence and stability domains.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] STOCHASTIC ACCELERATION OF SOLITONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Abou Salem, Walid K.
    Sulem, Catherine
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (01) : 117 - 152
  • [42] Nonlinear Schrodinger equation with a point defect
    Fukuizumi, Reika
    Ohta, Masahito
    Ozawa, Tohru
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05): : 837 - 845
  • [43] Optical solitons to the fractional Schrodinger-Hirota equation
    Sulaiman, Tukur Abdulkadir
    Bulut, Hasan
    Atas, Sibel Sehriban
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (02) : 535 - 542
  • [44] On the solution of the fractional nonlinear Schrodinger equation
    Rida, S. Z.
    EI-Sherbiny, H. M.
    Arafa, A. A. M.
    PHYSICS LETTERS A, 2008, 372 (05) : 553 - 558
  • [45] A NONLINEAR SCHRODINGER EQUATION WITH FRACTIONAL NOISE
    Deya, Aurelien
    Schaeffer, Nicolas
    Thomann, Laurent
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) : 4375 - 4422
  • [46] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [47] Symmetric and antisymmetric vector solitons for the fractional quadric-cubic coupled nonlinear Schrodinger equation
    Xu, Jia-Zhen
    Cao, Qi-Hao
    Dai, Chao-Qing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (07)
  • [48] Self-splitting of spatial solitons in a nonlinear fractional Schrodinger equation with a longitudinal potential barrier
    Meng, Yunji
    Ning, RenXia
    Ma, Kun
    Jiao, Zheng
    Liu, Youwen
    OPTICS COMMUNICATIONS, 2019, 440 : 68 - 74
  • [49] Elliptic Solitons in (1+2)-Dimensional Anisotropic Nonlocal Nonlinear Fractional Schrodinger Equation
    Wang, Qing
    Deng, ZhenZhou
    IEEE PHOTONICS JOURNAL, 2019, 11 (04):
  • [50] Band gaps and lattice solitons for the higher-order nonlinear Schrodinger equation with a periodic potential
    Cole, Justin T.
    Musslimani, Ziad H.
    PHYSICAL REVIEW A, 2014, 90 (01):