Defect solitons supported by nonlinear fractional Schrodinger equation with a defective lattice

被引:4
|
作者
Meng, Yunji [1 ]
Ning, Renxia [1 ]
Ma, Kun [1 ]
Jiao, Zheng [1 ]
Lv, Haijiang [1 ]
Liu, Youwen [2 ]
机构
[1] Huangshan Univ, Sch Informat Engn, Huangshan 245041, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Jiangsu, Peoples R China
关键词
Defect solitons; nonlinear fractional Schrodinger equation; defective lattice; GAP SOLITONS; DYNAMICS; BEAMS;
D O I
10.1142/S0218863519500218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate numerically the existence and stability of defect solitons in nonlinear fractional Schrodinger equation. For positive defects, defect solitons are only existent in the semi-infinite gap and are stable in their whole existence domain irrespective of Levy index. For moderate deep defects, defect solitons are existent in both the semi-infinite gap and first gap, and their instability domains occur in the low-power region of the semi-infinite gap. While for deep enough defects, stable defect solitons can be found in the second gap. Increasing the strength of defect (or Levy index) will narrow (or broaden) the existence and stability domains.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Moving solitons in the discrete nonlinear Schrodinger equation
    Oxtoby, O. F.
    Barashenkov, I. V.
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [32] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [33] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079
  • [34] Chirped solitons in derivative nonlinear Schrodinger equation
    Justin, Mibaile
    Hubert, Malwe Boudoue
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 49 - 54
  • [35] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [36] Solitons in a modified discrete nonlinear Schrodinger equation
    Molina, Mario I.
    SCIENTIFIC REPORTS, 2018, 8
  • [37] Spinning solitons of a modified nonlinear Schrodinger equation
    Brihaye, Y
    Hartmann, B
    Zakrzewski, WJ
    PHYSICAL REVIEW D, 2004, 69 (08): : 4
  • [38] Bright solitons of generalized nonlinear Schrodinger equation
    Jasinski, J
    OPTICS COMMUNICATIONS, 1999, 172 (1-6) : 325 - 333
  • [39] On the reflection of solitons of the cubic nonlinear Schrodinger equation
    Katsaounis, Theodoros
    Mitsotakis, Dimitrios
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 1013 - 1018
  • [40] Nonlinear Schrodinger equation solitons on quantum droplets
    Carstea, A. S.
    Ludu, A.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):