Groups and Lie algebras corresponding to the Yang-Baxter equations

被引:24
|
作者
Bartholdi, Laurent
Enriquez, Benjamin
Etingof, Pavel
Rains, Eric
机构
[1] MIT, Dept Math 2176, Cambridge, MA 02139 USA
[2] Ecole Polytech Fed Lausanne, Inst Math B, CH-1015 Lausanne, Switzerland
[3] CNRS, IRMA, F-67084 Strasbourg, France
[4] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jalgebra.2005.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer n we introduce quadratic Lie algebras tr(n), qtr(n) and finitely discrete groups Tr-n, QTr(n) naturally associated with the classical and quantum Yang-Baxter equation, respectively. We prove that the universal enveloping algebras of the Lie algebras tr(n), qtr(n) are Koszul, and compute their Hilbert series. We also compute the cohomology rings for these Lie algebras (which by Koszulity are the quadratic duals of the enveloping algebras). Finally, we construct a basis of U(tr(n)). We construct cell complexes which are classifying spaces of the groups Tr-n and QTr(n), and show that the boundary maps in them are zero, which allows us to compute the integral cohomology of these groups. We show that the Lie algebras tr(n), qtr(n) map onto the associated graded algebras of the Malcev Lie algebras of the groups Tr-n, QTr(n), respectively. In the case of Tr-n, we use quantization theory of Lie bialgebras to show that this map is actually an isomorphism. At the same time, we show that the groups Tr-n and QTr(n) are not formal for n >= 4. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:742 / 764
页数:23
相关论文
共 50 条
  • [41] Stokes Phenomenon and Yang-Baxter Equations
    Xu, Xiaomeng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (01) : 149 - 159
  • [42] QUANTUM AND CLASSICAL YANG-BAXTER EQUATIONS
    KOSMANNSCHWARZBACH, Y
    MODERN PHYSICS LETTERS A, 1990, 5 (13) : 981 - 990
  • [43] Yang-Baxter equations and quantum entanglements
    Ge, Mo-Lin
    Xue, Kang
    Zhang, Ruo-Yang
    Zhao, Qing
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5211 - 5242
  • [44] THE YANG-BAXTER EQUATIONS AND THE ZAMOLODCHIKOV MODEL
    BAXTER, RJ
    PHYSICA D, 1986, 18 (1-3): : 321 - 347
  • [45] MAGNETIC MONOPOLES AND THE YANG-BAXTER EQUATIONS
    ATIYAH, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (16): : 2761 - 2774
  • [46] THE YANG-BAXTER EQUATIONS AND DIFFERENTIAL IDENTITIES
    PU, FC
    SATTINGER, DH
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 118 - 126
  • [47] YANG-BAXTER EQUATIONS IN QUANTUM INFORMATION
    Ge, Mo-Lin
    Xue, Kang
    KOREPIN FESTSCHRIFT: FROM STATISTICAL MECHANICS TO QUANTUM INFORMATION SCIENCE: A COLLECTION OF ARTICLES WRITTEN IN HONOR OF THE 60TH BIRTHDAY OF VLADIMIR KOREPIN, 2013, : 85 - 103
  • [48] Yang-Baxter integrable Lindblad equations
    Ziolkowska, Aleksandra A.
    Essler, Fabian H. L.
    SCIPOST PHYSICS, 2020, 8 (03):
  • [49] Nonhomogeneous associative Yang-Baxter equations
    Ma, Tianshui
    Li, Jie
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (01): : 97 - 118
  • [50] Classical Yang-Baxter equation and left invariant affine geometry on Lie groups
    Diatta, A
    Medina, A
    MANUSCRIPTA MATHEMATICA, 2004, 114 (04) : 477 - 486