THE YANG-BAXTER EQUATIONS AND DIFFERENTIAL IDENTITIES

被引:0
|
作者
PU, FC [1 ]
SATTINGER, DH [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
10.1063/1.528869
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The solution of the Yang-Baxter equation for integrable systems is shown to be equivalent to the existence of a differential identity. Quantum integration formulas for the calculation of commutators of monodromy matrices are given. Based on the integration formulas and the systematic use of differential identities, the Yang-Baxter equations for the nonlinear Schrödinger model for the quantum case of both bosons and fermions are derived. The case for discrete models is also included. The parallelism between the classical and quantum case and the classical limiting process from the latter to the former are discussed. © 1989 American Institute of Physics.
引用
收藏
页码:118 / 126
页数:9
相关论文
共 50 条
  • [1] On triple systems and Yang-Baxter equations
    Kamiya, N
    Okubo, S
    [J]. SEVENTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, PROCEEDINGS, 1997, : 189 - 196
  • [2] Stokes Phenomenon and Yang-Baxter Equations
    Xu, Xiaomeng
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (01) : 149 - 159
  • [3] QUANTUM AND CLASSICAL YANG-BAXTER EQUATIONS
    KOSMANNSCHWARZBACH, Y
    [J]. MODERN PHYSICS LETTERS A, 1990, 5 (13) : 981 - 990
  • [4] MAGNETIC MONOPOLES AND THE YANG-BAXTER EQUATIONS
    ATIYAH, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (16): : 2761 - 2774
  • [5] THE YANG-BAXTER EQUATIONS AND THE ZAMOLODCHIKOV MODEL
    BAXTER, RJ
    [J]. PHYSICA D, 1986, 18 (1-3): : 321 - 347
  • [6] YANG-BAXTER EQUATIONS IN QUANTUM INFORMATION
    Ge, Mo-Lin
    Xue, Kang
    [J]. KOREPIN FESTSCHRIFT: FROM STATISTICAL MECHANICS TO QUANTUM INFORMATION SCIENCE: A COLLECTION OF ARTICLES WRITTEN IN HONOR OF THE 60TH BIRTHDAY OF VLADIMIR KOREPIN, 2013, : 85 - 103
  • [7] Yang-Baxter equations and quantum entanglements
    Ge, Mo-Lin
    Xue, Kang
    Zhang, Ruo-Yang
    Zhao, Qing
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5211 - 5242
  • [8] Nonhomogeneous associative Yang-Baxter equations
    Ma, Tianshui
    Li, Jie
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (01): : 97 - 118
  • [9] Yang-Baxter integrable Lindblad equations
    Ziolkowska, Aleksandra A.
    Essler, Fabian H. L.
    [J]. SCIPOST PHYSICS, 2020, 8 (03):
  • [10] Poisson algebras and Yang-Baxter equations
    Schedler, Travis
    [J]. ADVANCES IN QUANTUM COMPUTATION, 2009, 482 : 91 - 106