Groups and Lie algebras corresponding to the Yang-Baxter equations

被引:24
|
作者
Bartholdi, Laurent
Enriquez, Benjamin
Etingof, Pavel
Rains, Eric
机构
[1] MIT, Dept Math 2176, Cambridge, MA 02139 USA
[2] Ecole Polytech Fed Lausanne, Inst Math B, CH-1015 Lausanne, Switzerland
[3] CNRS, IRMA, F-67084 Strasbourg, France
[4] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jalgebra.2005.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer n we introduce quadratic Lie algebras tr(n), qtr(n) and finitely discrete groups Tr-n, QTr(n) naturally associated with the classical and quantum Yang-Baxter equation, respectively. We prove that the universal enveloping algebras of the Lie algebras tr(n), qtr(n) are Koszul, and compute their Hilbert series. We also compute the cohomology rings for these Lie algebras (which by Koszulity are the quadratic duals of the enveloping algebras). Finally, we construct a basis of U(tr(n)). We construct cell complexes which are classifying spaces of the groups Tr-n and QTr(n), and show that the boundary maps in them are zero, which allows us to compute the integral cohomology of these groups. We show that the Lie algebras tr(n), qtr(n) map onto the associated graded algebras of the Malcev Lie algebras of the groups Tr-n, QTr(n), respectively. In the case of Tr-n, we use quantization theory of Lie bialgebras to show that this map is actually an isomorphism. At the same time, we show that the groups Tr-n and QTr(n) are not formal for n >= 4. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:742 / 764
页数:23
相关论文
共 50 条
  • [21] CATEGORIFICATION OF PRE-LIE ALGEBRAS AND SOLUTIONS OF 2-GRADED CLASSICAL YANG-BAXTER EQUATIONS
    Sheng, Yunhe
    THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 269 - 294
  • [22] Yang-Baxter equation in median algebras
    Oner, Tahsin
    Katican, Tugce
    Saeid, Arsham Borumand
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 79 - 95
  • [23] Some remarks on Yang-Baxter algebras
    T.T. Truong
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 5 : 697 - 703
  • [24] Yang-Baxter maps, discrete integrable equations and quantum groups
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    NUCLEAR PHYSICS B, 2018, 926 : 509 - 543
  • [25] Mixed Bruhat operators and Yang-Baxter equations for Weyl groups
    Brenti, F
    Fomin, S
    Postnikov, A
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (08) : 419 - 441
  • [26] Twisted Yang-Baxter equations for linear quantum (super)groups
    Isaev, AP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : 6903 - 6910
  • [27] MONODROMY REPRESENTATIONS OF BRAID-GROUPS AND YANG-BAXTER EQUATIONS
    KOHNO, T
    ANNALES DE L INSTITUT FOURIER, 1987, 37 (04) : 139 - 160
  • [28] Bialgebras, the Yang-Baxter equation and Manin triples for mock-Lie algebras
    Benali, Karima
    Chtioui, Taoufik
    Hajjaji, Atef
    Mabrouk, Sami
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2023, 27 (02): : 211 - 233
  • [29] SOLUTIONS FOR THE CONSTANT QUANTUM YANG-BAXTER EQUATION FROM LIE (SUPER) ALGEBRAS
    Tanasa, Adrian
    Ballesteros, Angel
    Herranz, Francisco J.
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2007, 10 : 83 - 91
  • [30] Rational solutions of the classical Yang-Baxter equation and quasi Frobenius Lie algebras
    Stolin, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 137 (03) : 285 - 293