Supervised Automatic Detection of UWB Ground-Penetrating Radar Targets Using the Regression SSIM Measure

被引:13
|
作者
Wang, Yi Ke [1 ]
Li, Lianlin [1 ]
Zhou, Xiao Yang [2 ]
Cui, Tie Jun [2 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[2] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-dimensional embedding; regression processing; structural similarity index measure (SSIM); supervised graph; target detection; ultrawideband (UWB) radar;
D O I
10.1109/LGRS.2016.2515621
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces the concept of regression structural similarity index measure (regression SSIM) and builds a supervised graph framework of automatic detection of small-size ultrawideband (UWB) radar targets. The twofold contribution made in this letter includes the following: 1) The regression SSIM is proposed to measure the similarity of the local pattern between a test image and a reference image; and 2) the framework of a supervised graph, together with the regression SSIM, has been developed to address the automatic detection of UWB radar objects. As opposed to other detection techniques reported in the literature, our methodology does not rely on statistical modeling or imposing typical shape parameters. Selected results of processing simulated and real UWB ground-penetrating radar data are provided, which verifies the state-of-the-art performance of the proposed methodology and provides important potential for a wide class of target detection.
引用
收藏
页码:621 / 625
页数:5
相关论文
共 50 条
  • [1] UWB Antenna Assists Ground-Penetrating Radar
    Chung, Boon-Kuan
    Lee, Thian-Po
    MICROWAVES & RF, 2008, 47 (13) : 59 - +
  • [2] Automatic detection of hyperbolic signatures in ground-penetrating radar data
    Al-Nuaimy, W
    Huang, Y
    Eriksen, A
    Nguyen, VT
    SUBSURFACE AND SURFACE SENSING TECHNOLOGIES AND APPLICATIONS III, 2001, 4491 : 327 - 335
  • [3] Sensitive Vibration Detection Using Ground-Penetrating Radar
    Wetherington, Joshua M.
    Steer, Michael B.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (12) : 680 - 682
  • [4] Detection of Root Orientation Using Ground-Penetrating Radar
    Liu, Qixin
    Cui, Xihong
    Liu, Xinbo
    Chen, Jin
    Chen, Xuehong
    Cao, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 93 - 104
  • [5] Phantom subsurface targets in ground-penetrating radar data
    Diamanti, Nectaria
    Annan, A. Peter
    Vargemezis, Georgios
    GEOPHYSICS, 2022, 87 (04) : WB31 - WB40
  • [6] Crevasses detection in Himalayan glaciers using ground-penetrating radar
    Singh, K.K. (kamal.kant@sase.drdo.in), 1600, Indian Academy of Sciences (105):
  • [7] Crevasses detection in Himalayan glaciers using ground-penetrating radar
    Singh, K. K.
    Negi, H. S.
    Ganju, A.
    Kulkarni, A. V.
    Kumar, A.
    Mishra, V. D.
    Kumar, S.
    CURRENT SCIENCE, 2013, 105 (09): : 1288 - 1295
  • [8] GROUND-PENETRATING RADAR FOR THE DETECTION OF LIQUID CONTAMINANTS
    DANIELS, JJ
    ROBERTS, R
    VENDL, M
    JOURNAL OF APPLIED GEOPHYSICS, 1995, 33 (1-3) : 195 - 207
  • [9] Automatic detection of mud-wall signatures in ground-penetrating radar data
    Bordon, Pablo
    Martinelli, Patricia
    Zabala Medina, Peter
    Bonomo, Nestor
    Ratto, Norma Rosa
    ARCHAEOLOGICAL PROSPECTION, 2021, 28 (01) : 89 - 106
  • [10] Subsurface Object Detection Using UWB Ground Penetrating Radar
    Ji, Guangrong
    Gao, Xiang
    Zhang, Hao
    Gulliver, T. Aaron
    2009 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 740 - 743