Supervised Automatic Detection of UWB Ground-Penetrating Radar Targets Using the Regression SSIM Measure

被引:13
|
作者
Wang, Yi Ke [1 ]
Li, Lianlin [1 ]
Zhou, Xiao Yang [2 ]
Cui, Tie Jun [2 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[2] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-dimensional embedding; regression processing; structural similarity index measure (SSIM); supervised graph; target detection; ultrawideband (UWB) radar;
D O I
10.1109/LGRS.2016.2515621
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces the concept of regression structural similarity index measure (regression SSIM) and builds a supervised graph framework of automatic detection of small-size ultrawideband (UWB) radar targets. The twofold contribution made in this letter includes the following: 1) The regression SSIM is proposed to measure the similarity of the local pattern between a test image and a reference image; and 2) the framework of a supervised graph, together with the regression SSIM, has been developed to address the automatic detection of UWB radar objects. As opposed to other detection techniques reported in the literature, our methodology does not rely on statistical modeling or imposing typical shape parameters. Selected results of processing simulated and real UWB ground-penetrating radar data are provided, which verifies the state-of-the-art performance of the proposed methodology and provides important potential for a wide class of target detection.
引用
收藏
页码:621 / 625
页数:5
相关论文
共 50 条
  • [31] USING GROUND-PENETRATING RADAR TO STUDY SOIL MICROVARIABILITY
    COLLINS, ME
    DOOLITTLE, JA
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1987, 51 (02) : 491 - 493
  • [32] Geostatistical inference using crosshole ground-penetrating radar
    Looms, Majken C.
    Hansen, Thomas M.
    Cordua, Knud S.
    Nielsen, Lars
    Jensen, Karsten H.
    Binley, Andrew
    GEOPHYSICS, 2010, 75 (06) : J29 - J41
  • [33] Automatic asphalt layer interface detection and thickness determination from ground-penetrating radar data
    Wang, Siqi
    Leng, Zhen
    Zhang, Zeyu
    Sui, Xin
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 357
  • [34] DELINEATION OF SHALLOW STRATIGRAPHY USING GROUND-PENETRATING RADAR
    DOMINIC, DF
    EGAN, K
    CARNEY, C
    WOLFE, PJ
    BOARDMAN, MR
    JOURNAL OF APPLIED GEOPHYSICS, 1995, 33 (1-3) : 167 - 175
  • [35] USING GROUND-PENETRATING RADAR TO PINPOINT PIPELINE LEAKS
    GRAF, FL
    MATERIALS PERFORMANCE, 1990, 29 (04) : 27 - 29
  • [36] Subsurface imaging using ground-penetrating radar measurements
    Goodman, N
    Leuschen, C
    Plumb, R
    Allen, C
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 2036 - 2037
  • [37] Estimation of saline regions using ground-penetrating radar
    Onishi, K
    Rokugawa, S
    Katoh, Y
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, VOLS 1 AND 2, 2004, : 509 - 512
  • [38] PROFILING OF PONDS AND BOGS USING GROUND-PENETRATING RADAR
    MELLETT, JS
    JOURNAL OF PALEOLIMNOLOGY, 1995, 14 (03) : 233 - 240
  • [39] Railroad Ballast Evaluation Using Ground-Penetrating Radar
    Leng, Zhen
    Al-Qadi, Imad L.
    TRANSPORTATION RESEARCH RECORD, 2010, (2159) : 110 - 117
  • [40] On Choosing Training and Testing Data for Supervised Algorithms in Ground-Penetrating Radar Data for Buried Threat Detection
    Reichman, Daniel
    Collins, Leslie M.
    Malof, Jordan M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 497 - 507