Simulation of graphene nanoribbon field-effect transistors

被引:263
|
作者
Fiori, Gianluca [1 ]
Iannaccone, Giuseppe [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz, I-56126 Pisa, Italy
关键词
atomistic tight-binding Hamiltonian; graphene; nanoribbon; nonequilibriurn Green's function formalism (NEGF); 3-D Poisson;
D O I
10.1109/LED.2007.901680
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an atornistic 3-D simulation of graphene nanoribbon field-effect transistors (GNR-FETs), based on the self-consistent solution of the 3-D Poisson and Schrodinger equations with open boundary conditions within the nonequilibrium Green's function formalism and a tight-binding Hamiltonian. With respect to carbon nanotube FETs, GNR-FETs exhibit comparable performance, reduced sensitivity to the variability of channel chirality, and similar leakage problems due to hand-to-hand tunneling. Acceptable transistor performance requires prohibitive effective nanoribbon width of 1-2 nm and atomistic precision that could in principle be obtained with periodic etch patterns or stress patterns.
引用
收藏
页码:760 / 762
页数:3
相关论文
共 50 条
  • [41] Graphene nanoribbon field-effect transistor at high bias
    Ghadiry, Mahdiar
    Ismail, Razali
    Saeidmanesh, Mehdi
    Khaledian, Mohsen
    Abd Manaf, Asrulnizam
    NANOSCALE RESEARCH LETTERS, 2014, 9
  • [42] Simulation of field-effect transistors and resonant tunneling diodes based on graphene
    Abramov, Igor I.
    Labunov, Vladimir A.
    Kolomejtseva, Natali V.
    Romanova, Irina A.
    INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2016, 2016, 10224
  • [43] Simulation of hydrogenated graphene field-effect transistors through a multiscale approach
    Fiori, G.
    Lebegue, S.
    Betti, A.
    Michetti, P.
    Klintenberg, M.
    Eriksson, O.
    Iannaccone, G.
    PHYSICAL REVIEW B, 2010, 82 (15):
  • [44] A Numerical Simulation of C3N Nanoribbon-Based Field-Effect Transistors
    Zhang, Tiancheng
    Zeng, Hui
    Ding, Dazhi
    Chen, R. S.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (02) : 1087 - 1091
  • [45] Top-of-the-Barrier Ballistic Carbon Nanotubes and Graphene Nanoribbon Field-Effect Transistors Quantum Simulator
    Chin, Huei Chaeng
    Ng, Chin Lin
    Lim, Cheng Siong
    Tan, Michael Loong Peng
    SCIENCE OF ADVANCED MATERIALS, 2015, 7 (12) : 2576 - 2582
  • [46] Non-equilibrium Green function simulations of graphene, silicene, and germanene nanoribbon field-effect transistors
    Clendennen, Casey
    Mori, Nobuya
    Tsuchiya, Hideaki
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2015, 2 (01): : 171 - 177
  • [47] Analytical Current Transport Modeling of Graphene Nanoribbon Tunnel Field-Effect Transistors for Digital Circuit Design
    Fahad, Md Shamiul
    Srivastava, Ashok
    Sharma, Ashwani K.
    Mayberry, Clay
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (01) : 39 - 50
  • [48] Electrical Performance Enhancement of 20 nm Scale Graphene Nanoribbon Field-Effect Transistors with Dipolar Molecules
    Kim, Seohee
    Park, Saungeun
    Akinwande, Deji
    Dodabalapur, Ananth
    2016 74TH ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2016,
  • [49] Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788)
    Ohtomo, Manabu
    Sekine, Yoshiaki
    Hibino, Hiroki
    Yamamoto, Hideki
    APPLIED PHYSICS LETTERS, 2018, 112 (02)
  • [50] Probing transconductance spatial variations in graphene nanoribbon field-effect transistors using scanning gate microscopy
    Soudi, A.
    Aivazian, G.
    Shi, S. -F.
    Xu, X. D.
    Gu, Y.
    APPLIED PHYSICS LETTERS, 2012, 100 (03)