Simulation of graphene nanoribbon field-effect transistors

被引:263
|
作者
Fiori, Gianluca [1 ]
Iannaccone, Giuseppe [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz, I-56126 Pisa, Italy
关键词
atomistic tight-binding Hamiltonian; graphene; nanoribbon; nonequilibriurn Green's function formalism (NEGF); 3-D Poisson;
D O I
10.1109/LED.2007.901680
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an atornistic 3-D simulation of graphene nanoribbon field-effect transistors (GNR-FETs), based on the self-consistent solution of the 3-D Poisson and Schrodinger equations with open boundary conditions within the nonequilibrium Green's function formalism and a tight-binding Hamiltonian. With respect to carbon nanotube FETs, GNR-FETs exhibit comparable performance, reduced sensitivity to the variability of channel chirality, and similar leakage problems due to hand-to-hand tunneling. Acceptable transistor performance requires prohibitive effective nanoribbon width of 1-2 nm and atomistic precision that could in principle be obtained with periodic etch patterns or stress patterns.
引用
收藏
页码:760 / 762
页数:3
相关论文
共 50 条
  • [21] Effect of Uniaxial Strain on the Current-Voltage Characteristics of Graphene Nanoribbon Field-Effect Transistors
    Kliros, George S.
    2013 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), VOLS 1-2, 2013, : 27 - 30
  • [22] Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors
    El Abbassi, Maria
    Perrin, Mickael L.
    Barin, Gabriela Borin
    Sangtarash, Sara
    Overbeck, Jan
    Braun, Oliver
    Lambert, Colin J.
    Sun, Qiang
    Prechtl, Thorsten
    Narita, Akimitsu
    Muellen, Klaus
    Ruffieux, Pascal
    Sadeghi, Hatef
    Fasel, Roman
    Calame, Michel
    ACS NANO, 2020, 14 (05) : 5754 - 5762
  • [23] Coulomb-energy featured capture kinetics in graphene nanoribbon field-effect transistors
    Lu, Ming-Pei
    PHYSICAL REVIEW B, 2012, 86 (04):
  • [24] Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors
    Mao, Ling-Feng
    NANOTECHNOLOGY, 2009, 20 (27)
  • [25] Negative Differential Resistance and Steep Switching in Chevron Graphene Nanoribbon Field-Effect Transistors
    Smith, Samuel
    Llinas, Juan-Pablo
    Bokor, Jeffrey
    Salahuddin, Sayeef
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (01) : 143 - 146
  • [26] Hysteresis in graphene nanoribbon field-effect devices
    Tries, Alexander
    Richter, Nils
    Chen, Zongping
    Narita, Akimitsu
    Muellen, Klaus
    Wang, Hai, I
    Bonn, Mischa
    Klaeui, Mathias
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (10) : 5667 - 5672
  • [27] Computational study of bilayer armchair graphene nanoribbon tunneling Computational study of bilayer armchair graphene nanoribbon tunneling field-effect transistors for digital circuit design field-effect transistors for digital circuit design
    Shamloo, H.
    Goharrizi, A. Yazdanpanah
    DIAMOND AND RELATED MATERIALS, 2025, 151
  • [28] Graphene nanoribbon field effect transistors analysis and applications
    Radsar, Tahereh
    Khalesi, Hassan
    Ghods, Vahid
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 153
  • [29] Effect of Ribbon Width and Doping Concentration on Device Performance of Graphene Nanoribbon Tunneling Field-Effect Transistors
    Lam, Kai-Tak
    Chin, Sai-Kong
    Seah, Da Wei
    Kumar, S. Bala
    Liang, Gengchiau
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (04)
  • [30] Improving the performance of graphene nanoribbon field-effect transistors by using lanthanum aluminate as the gate dielectric
    Tahereh Radsar
    Hassan Khalesi
    Vahid Ghods
    Journal of Computational Electronics, 2020, 19 : 1507 - 1515